✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本文探讨了连续同心推拉机器人 (CPPR) 的建模,该模型源于 Tummers 等人发表在《国际机器人研究杂志》上的论文“连续同心推拉机器人:Cosserat 杆模型”。近年来,各种方法和结构层出不穷,用于设计连续机器人。其中,CPPR 作为一种新兴设计理念,因其结合了腱驱动、多脊柱和同心管机器人的优势而备受关注。CPPR 拥有直接曲率驱动、内外径比小、自由腔等优点。然而,针对这种新型机器人的几何精确模型尚待发展,以充分发挥其潜力。
本文突破了传统 Cosserat 杆理论的定义,以适应这种由滑动杆组成的、截面非均匀且不对称的新型连续机器人。该模型能够考虑多种设计选项,包括外部载荷、3D 形变、任意数量的管子和质心线轮廓,以及一种新的输入旋转驱动方式。通过数值模拟和 CPPR 原型的实验验证,证明了该模型的有效性。
核心内容概述:
-
**问题背景:**CPPR 作为一种新型连续机器人,具有多种优势,但缺乏精确的几何模型。
-
**模型创新:**本文扩展了传统 Cosserat 杆理论,以适应 CPPR 的特殊结构,包括滑动杆、非均匀截面、非对称结构等。
-
**模型优势:**该模型能够考虑多种设计选项、外部载荷、3D 形变、任意数量的管子和质心线轮廓,以及新的输入旋转驱动方式。
-
**模型验证:**通过数值模拟和 CPPR 原型的实验,验证了模型的有效性。
主要结论:
本文提出的模型为 CPPR 提供了精确的几何描述,能够更好地理解其运动行为和力学特性。该模型的应用将有助于推动 CPPR 的设计和应用,为医疗、工业和服务等领域带来新的应用场景。
意义和影响:
-
**推动 CPPR 的发展:**该模型为 CPPR 的设计和研究提供了理论基础,有助于其进一步的优化和应用。
-
**拓展 Cosserat 杆理论:**本文的工作扩展了 Cosserat 杆理论的应用范围,为其他新型连续机器人的建模提供了借鉴。
-
**促进机器人技术发展:**该模型的应用将推动机器人技术的发展,为医疗、工业和服务等领域带来新的突破。
未来展望:
未来,可以进一步研究 CPPR 的动力学模型,以更好地理解其运动行为和控制方法。同时,可以将该模型应用于其他新型连续机器人的设计,以实现更复杂的功能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类