✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
近年来,随着信息技术的飞速发展,数据安全问题日益突出。数字图像作为一种重要的信息载体,其安全性也备受关注。图像隐藏技术作为一种重要的信息安全技术,能够将秘密信息隐藏在数字图像中,从而达到隐蔽传输的目的。本文将探讨基于LSB文本信息隐写和DCT-DWT数字水印嵌入攻击提取的图像隐藏技术,并对其性能进行分析。
1. 图像隐藏技术概述
图像隐藏技术是指将秘密信息隐藏在载体图像中,使其不易被察觉,从而实现隐蔽传输。常见的图像隐藏技术包括:
-
LSB隐写: 将秘密信息嵌入图像的最低有效位(LSB)。
-
DCT域隐写: 将秘密信息嵌入图像的离散余弦变换 (DCT) 域系数。
-
DWT域隐写: 将秘密信息嵌入图像的小波变换 (DWT) 域系数。
2. 基于LSB文本信息隐写
LSB隐写技术利用图像像素的最低有效位来嵌入秘密信息。其原理是将秘密信息转换为二进制序列,并将每个比特嵌入图像像素的最低有效位。由于人眼对LSB的变化并不敏感,因此嵌入后的图像不会明显地改变。
2.1 嵌入算法
-
将秘密信息文本转换为二进制序列。
-
将每个比特嵌入图像像素的LSB。
-
采用特定算法对嵌入过程进行加密,例如简单的XOR操作。
2.2 提取算法
-
从载体图像中提取所有像素的LSB。
-
将提取的LSB序列解码为二进制信息。
-
使用与嵌入时相同的加密算法进行解密。
3. 基于DCT-DWT数字水印嵌入攻击
数字水印是一种将特定信息嵌入到数字媒体中的技术,用于版权保护、认证和追踪等目的。DCT-DWT数字水印嵌入技术利用图像的DCT变换和DWT变换来嵌入水印信息。
3.1 嵌入算法
-
对图像进行DCT变换,将图像分解为不同频率的子带。
-
对图像进行DWT变换,将图像分解为不同尺度的子带。
-
将水印信息嵌入到DCT或DWT域的特定子带上。
3.2 提取算法
-
对载体图像进行DCT或DWT变换。
-
从嵌入水印的子带上提取水印信息。
-
使用与嵌入时相同的算法进行解密。
4. 攻击提取
基于LSB文本信息隐写和DCT-DWT数字水印嵌入技术的攻击提取方法可以分为以下几类:
-
噪声攻击: 在载体图像中添加噪声,破坏LSB或DCT/DWT系数,导致嵌入信息的丢失。
-
几何攻击: 对载体图像进行旋转、缩放、裁剪等几何操作,破坏嵌入信息的结构。
-
压缩攻击: 对载体图像进行压缩,导致嵌入信息丢失或失真。
5. 性能评估指标
评估图像隐藏技术的性能指标主要包括:
-
信噪比 (SNR): 衡量嵌入信息对图像质量的影响。
-
归一化互相关系数 (NCC): 衡量提取的信息与原始信息之间的相似性。
-
信息隐藏率 (IF): 衡量载体图像能够隐藏的信息量。
6. 结论
本文探讨了基于LSB文本信息隐写和DCT-DWT数字水印嵌入攻击提取的图像隐藏技术,并对其性能进行了分析。实验结果表明,LSB隐写技术虽然简单易实现,但其抗攻击能力较弱。DCT-DWT数字水印嵌入技术具有较好的抗攻击能力,但其嵌入信息量有限。在实际应用中,应根据具体需求选择合适的图像隐藏技术。
7. 未来研究方向
-
探索更鲁棒的图像隐藏算法,提高其抗攻击能力。
-
研究更有效的嵌入和提取算法,提高信息隐藏效率和安全性。
-
开发新的图像隐藏评估指标,更加全面地评价图像隐藏技术的性能。
8. 附录
-
SNR: 信噪比 (Signal-to-Noise Ratio),表示信号强度与噪声强度的比值。
-
NCC: 归一化互相关系数 (Normalized Cross-Correlation),表示两个信号之间的相似度。
-
IF: 信息隐藏率 (Information Hiding Rate),表示载体图像能够隐藏的信息量占图像总大小的比例。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类