【图像隐藏】基于LSB文本信息隐写和DCT-DWT数字水印嵌入攻击提取,SNR NCC IF附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

近年来,随着信息技术的飞速发展,数据安全问题日益突出。数字图像作为一种重要的信息载体,其安全性也备受关注。图像隐藏技术作为一种重要的信息安全技术,能够将秘密信息隐藏在数字图像中,从而达到隐蔽传输的目的。本文将探讨基于LSB文本信息隐写和DCT-DWT数字水印嵌入攻击提取的图像隐藏技术,并对其性能进行分析。

1. 图像隐藏技术概述

图像隐藏技术是指将秘密信息隐藏在载体图像中,使其不易被察觉,从而实现隐蔽传输。常见的图像隐藏技术包括:

  • LSB隐写: 将秘密信息嵌入图像的最低有效位(LSB)。

  • DCT域隐写: 将秘密信息嵌入图像的离散余弦变换 (DCT) 域系数。

  • DWT域隐写: 将秘密信息嵌入图像的小波变换 (DWT) 域系数。

2. 基于LSB文本信息隐写

LSB隐写技术利用图像像素的最低有效位来嵌入秘密信息。其原理是将秘密信息转换为二进制序列,并将每个比特嵌入图像像素的最低有效位。由于人眼对LSB的变化并不敏感,因此嵌入后的图像不会明显地改变。

2.1 嵌入算法

  • 将秘密信息文本转换为二进制序列。

  • 将每个比特嵌入图像像素的LSB。

  • 采用特定算法对嵌入过程进行加密,例如简单的XOR操作。

2.2 提取算法

  • 从载体图像中提取所有像素的LSB。

  • 将提取的LSB序列解码为二进制信息。

  • 使用与嵌入时相同的加密算法进行解密。

3. 基于DCT-DWT数字水印嵌入攻击

数字水印是一种将特定信息嵌入到数字媒体中的技术,用于版权保护、认证和追踪等目的。DCT-DWT数字水印嵌入技术利用图像的DCT变换和DWT变换来嵌入水印信息。

3.1 嵌入算法

  • 对图像进行DCT变换,将图像分解为不同频率的子带。

  • 对图像进行DWT变换,将图像分解为不同尺度的子带。

  • 将水印信息嵌入到DCT或DWT域的特定子带上。

3.2 提取算法

  • 对载体图像进行DCT或DWT变换。

  • 从嵌入水印的子带上提取水印信息。

  • 使用与嵌入时相同的算法进行解密。

4. 攻击提取

基于LSB文本信息隐写和DCT-DWT数字水印嵌入技术的攻击提取方法可以分为以下几类:

  • 噪声攻击: 在载体图像中添加噪声,破坏LSB或DCT/DWT系数,导致嵌入信息的丢失。

  • 几何攻击: 对载体图像进行旋转、缩放、裁剪等几何操作,破坏嵌入信息的结构。

  • 压缩攻击: 对载体图像进行压缩,导致嵌入信息丢失或失真。

5. 性能评估指标

评估图像隐藏技术的性能指标主要包括:

  • 信噪比 (SNR): 衡量嵌入信息对图像质量的影响。

  • 归一化互相关系数 (NCC): 衡量提取的信息与原始信息之间的相似性。

  • 信息隐藏率 (IF): 衡量载体图像能够隐藏的信息量。

6. 结论

本文探讨了基于LSB文本信息隐写和DCT-DWT数字水印嵌入攻击提取的图像隐藏技术,并对其性能进行了分析。实验结果表明,LSB隐写技术虽然简单易实现,但其抗攻击能力较弱。DCT-DWT数字水印嵌入技术具有较好的抗攻击能力,但其嵌入信息量有限。在实际应用中,应根据具体需求选择合适的图像隐藏技术。

7. 未来研究方向

  • 探索更鲁棒的图像隐藏算法,提高其抗攻击能力。

  • 研究更有效的嵌入和提取算法,提高信息隐藏效率和安全性。

  • 开发新的图像隐藏评估指标,更加全面地评价图像隐藏技术的性能。

8. 附录

  • SNR: 信噪比 (Signal-to-Noise Ratio),表示信号强度与噪声强度的比值。

  • NCC: 归一化互相关系数 (Normalized Cross-Correlation),表示两个信号之间的相似度。

  • IF: 信息隐藏率 (Information Hiding Rate),表示载体图像能够隐藏的信息量占图像总大小的比例。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值