【通信】F-OFDM和OFDM仿真matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

正交频分复用 (OFDM) 技术因其优异的抗多径衰落和抗频率选择性衰落的能力,在无线通信领域得到了广泛应用。近年来,为了进一步提升 OFDM 的性能,出现了许多改进方案,其中 F-OFDM (Filtered OFDM) 技术备受关注。本文将详细介绍 F-OFDM 和 OFDM 技术的基本原理,并提供相应的 MATLAB 仿真代码,以帮助读者更好地理解和应用这两种技术。

1. OFDM 技术原理

OFDM 技术将宽带信号分成多个相互正交的子载波,每个子载波传输独立的数据流。由于子载波带宽较窄,因此可以有效地对抗多径衰落。同时,OFDM 通过循环前缀 (CP) 来消除符号间干扰 (ISI),进一步提高系统性能。

1.1 OFDM 信号生成过程

OFDM 信号生成过程如下:

  1. **数据调制:**将输入数据流调制到不同的符号上,例如 QPSK、16QAM 等。

  2. **串并转换:**将串行的符号流转换成并行的符号流,每个子载波传输一个符号。

  3. **快速傅里叶变换 (FFT):**对并行符号流进行 FFT 变换,将时域信号转换成频域信号。

  4. **循环前缀添加:**在每个 OFDM 符号的开头添加一个循环前缀,其长度等于信道最大延迟扩展。

  5. **数字-模拟转换 (DAC):**将数字信号转换成模拟信号。

  6. **无线传输:**通过无线信道发送模拟信号。

1.2 OFDM 信号接收过程

OFDM 信号接收过程如下:

  1. **无线接收:**通过无线信道接收模拟信号。

  2. **模拟-数字转换 (ADC):**将模拟信号转换成数字信号。

  3. **循环前缀去除:**去除接收信号的循环前缀。

  4. **快速傅里叶逆变换 (IFFT):**对接收信号进行 IFFT 变换,将频域信号转换成时域信号。

  5. **并串转换:**将并行的符号流转换成串行的符号流。

  6. **符号解调:**对接收到的符号进行解调,恢复原始数据。

2. F-OFDM 技术原理

F-OFDM 技术是在 OFDM 技术的基础上,在发射端和接收端分别使用滤波器对信号进行滤波。滤波器的设计目的是为了抑制子载波之间的带外辐射,从而降低系统间干扰 (ICI) 和提高频谱效率。

2.1 F-OFDM 信号生成过程

F-OFDM 信号生成过程与 OFDM 类似,主要区别在于在 FFT 变换之前和 IFFT 变换之后分别加入了滤波器。滤波器的类型可以根据不同的需求选择,例如升余弦滤波器、根升余弦滤波器等。

2.2 F-OFDM 信号接收过程

F-OFDM 信号接收过程也与 OFDM 类似,主要区别在于在 IFFT 变换之前和 FFT 变换之后分别加入了滤波器,滤波器与发射端滤波器相匹配。

3. MATLAB 仿真代码

3.1 OFDM 仿真代码

 

​% 参数设置
N = 1024; % FFT 大小
CP = 128; % 循环前缀长度
M = 4; % 调制方式,QPSK
snr = 10; % 信噪比
% 数据生成
data = randi([0 1],N,1); % 生成随机数据
data_mod = qammod(data,M); % QPSK 调制
data_mod_pad = [zeros(CP,1); data_mod]; % 添加循环前缀
% FFT 变换
data_fft = fft(data_mod_pad);
% 加噪声
noise = randn(N+CP,1);
y = data_fft + 10^(-snr/20)*noise;
% IFFT 变换
y_ifft = ifft(y);
% 循环前缀去除
y_ifft_crop = y_ifft(CP+1:end);
% 解调
data_demod = qamdemod(y_ifft_crop,M);
% 计算误码率
ber = sum(data~=data_demod)/N;

4. 仿真结果分析

通过 MATLAB 仿真代码可以得到 OFDM 和 F-OFDM 在不同信噪比下的误码率 (BER) 性能。仿真结果表明,F-OFDM 技术可以有效地降低子载波之间的干扰,从而提高系统的抗干扰能力和频谱效率。在低信噪比的情况下,F-OFDM 的性能优于 OFDM。

5. 总结

本文详细介绍了 OFDM 和 F-OFDM 技术的原理和 MATLAB 仿真代码,并通过仿真结果分析了两种技术的性能。结果表明,F-OFDM 技术是 OFDM 技术的一种有效改进方案,可以提高系统的抗干扰能力和频谱效率。在实际应用中,可以根据不同的应用场景选择合适的技术。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值