【电力调度】基于蜜蜂算法求解电力系统经济调度附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电力系统经济调度(Economic Dispatch, ED)是电力系统运行与控制中的一项重要任务,旨在在满足系统负荷需求、机组运行约束以及网络安全约束的前提下,合理分配各发电机组的出力,从而实现最小化系统总发电成本的目标。随着电力系统规模日益扩大、可再生能源接入比例不断提高以及电力市场改革的深入推进,经济调度问题的求解难度也显著增加。传统的优化方法在解决大规模、复杂约束的经济调度问题时,往往面临着计算复杂度高、收敛速度慢、容易陷入局部最优等问题。因此,探索高效、鲁棒的优化算法对于电力系统经济调度的优化至关重要。近年来,群智能优化算法凭借其全局搜索能力强、对问题特性依赖性低等优势,在电力系统领域得到了广泛应用。其中,蜜蜂算法(Artificial Bee Colony, ABC)作为一种新兴的群智能优化算法,因其原理简单、参数较少、易于实现等特点,在求解电力系统经济调度问题方面展现出良好的潜力。本文将深入探讨基于蜜蜂算法求解电力系统经济调度的理论基础、建模方法以及优化策略,并对该算法在实际应用中的优势与局限性进行分析。

一、电力系统经济调度模型

电力系统经济调度问题的数学模型可以概括为:目标函数:

Min F = ∑(i=1 to N) Ci(Pi)

其中,F表示系统的总发电成本,Ci(Pi)表示第i台发电机组的发电成本函数,Pi表示第i台发电机组的出力,N表示发电机组的总数量。通常情况下,发电成本函数可以表示为二次多项式:

Ci(Pi) = ai + bi*Pi + ci*Pi^2 

其中,ai、bi、ci为第i台发电机组的成本系数。

约束条件:

  1. 功率平衡约束:

∑(i=1 to N) Pi = PD + PL 

其中,PD表示系统总负荷需求,PL表示网络损耗。网络损耗PL可以是恒定的常数,也可以是发电机组出力Pi的函数,常见的函数表达形式包括B系数法、潮流计算法等。

  1. 发电机组出力上下限约束:Pi_min ≤ Pi ≤ Pi_max (i=1,2,...,N)

其中,Pi_min和Pi_max分别表示第i台发电机组的最小出力和最大出力。

  1. 爬坡速率约束:-DRi ≤ Pi(t) - Pi(t-1) ≤ URi (i=1,2,...,N)

其中,DRi和URi分别表示第i台发电机组的降出力速率和升出力速率,Pi(t)和Pi(t-1)分别表示第i台发电机组在t时刻和t-1时刻的出力。

  1. 禁止运行区约束:

某些发电机组在特定的出力范围内可能存在运行不稳定或效率低下的情况,因此需要设置禁止运行区。该约束可以表示为:

Pi ∉ [P_down, P_up]

其中,[P_down, P_up]表示发电机组的禁止运行区范围。

  1. 网络安全约束:

网络安全约束主要包括线路潮流约束和节点电压约束,确保系统运行在安全可靠的范围内。这些约束通常通过潮流计算进行评估,并以不等式约束的形式体现:

|S_ij| ≤ S_ij_max
Vi_min ≤ Vi ≤ Vi_max 

其中,|S_ij|表示线路ij的潮流,S_ij_max表示线路ij的最大潮流容量,Vi表示节点i的电压,Vi_min和Vi_max分别表示节点i的最小电压和最大电压。

二、蜜蜂算法原理及改进策略

蜜蜂算法是一种模拟蜜蜂采蜜行为的群智能优化算法,主要由引领蜂(Employed Bees)、跟随蜂(Onlooker Bees)和侦察蜂(Scout Bees)三种角色构成。

  1. 引领蜂阶段: 引领蜂负责在解空间中搜索新的候选解。每只引领蜂与一个特定的蜜源位置对应,蜜源的质量代表着解的适应度值(目标函数值)。引领蜂通过在其当前位置附近进行随机搜索,寻找更好的蜜源。搜索公式通常采用以下形式:

ij = Xi,j + rand* (Xi,j - Xk,j) 

其中,Vij表示新的蜜源位置,Xi,j表示当前蜜源位置,Xk,j表示随机选择的蜜源位置,rand是[−1, 1]之间的随机数。

  1. 跟随蜂阶段: 跟随蜂根据引领蜂提供的蜜源信息,选择跟随的蜜源进行进一步搜索。跟随蜂选择蜜源的概率通常与蜜源的质量成正比,采用轮盘赌选择法:

(i) = fitness(i) / ∑(j=1 to N) fitness(j) 

其中,P(i)表示跟随蜂选择蜜源i的概率,fitness(i)表示蜜源i的适应度值,N表示蜜源的总数量。

  1. 侦察蜂阶段: 如果某个蜜源在一定迭代次数内没有得到改善,则该蜜源对应的引领蜂变为侦察蜂,负责在解空间中进行随机搜索,寻找新的蜜源。侦察蜂的搜索有助于算法跳出局部最优。

针对电力系统经济调度问题的特点,可以对标准蜜蜂算法进行如下改进:

  1. 编码方式: 针对发电机组出力这一连续变量,采用实数编码方式。每个蜜源位置代表一组发电机组出力方案。

  2. 约束处理: 针对功率平衡约束,可以采用惩罚函数法,将违反功率平衡约束的解施加惩罚,降低其适应度值。对于发电机组出力上下限约束,可以直接在搜索过程中进行限制,确保生成的解满足约束条件。对于网络安全约束,可以将其纳入目标函数,通过潮流计算评估网络安全水平,并对违反网络安全约束的解施加惩罚。

  3. 搜索策略改进: 可以采用动态调整搜索步长的方法,在算法初期采用较大的步长进行全局搜索,在算法后期采用较小的步长进行局部搜索,提高算法的收敛速度和精度。

  4. 精英保留策略: 保留每一代最优的蜜源位置,确保算法不会丢失最优解。

三、基于蜜蜂算法求解电力系统经济调度的步骤

  1. 初始化: 初始化蜜蜂种群,包括引领蜂、跟随蜂和侦察蜂的数量,以及其他参数,如最大迭代次数、限制次数等。初始化每个蜜源位置,使其满足发电机组出力上下限约束。

  2. 引领蜂阶段: 每只引领蜂在其当前位置附近进行搜索,生成新的蜜源位置。评估新蜜源位置的适应度值。

  3. 跟随蜂阶段: 跟随蜂根据引领蜂提供的蜜源信息,采用轮盘赌选择法选择跟随的蜜源进行进一步搜索。评估新蜜源位置的适应度值。

  4. 侦察蜂阶段: 如果某个蜜源在一定迭代次数内没有得到改善,则该蜜源对应的引领蜂变为侦察蜂,负责在解空间中进行随机搜索,寻找新的蜜源。评估新蜜源位置的适应度值。

  5. 精英保留: 保留当前种群中最优的蜜源位置。

  6. 判断是否满足终止条件: 如果满足最大迭代次数或其他终止条件,则停止算法,输出最优解。否则,返回步骤2。

⛳️ 运行结果

🔗 参考文献

[1] 袁铁江,晁勤,李义岩.面向电力市场的含风电电力系统的环境经济调度优化[J].电网技术, 2009(20):5.DOI:10.1016/j.apm.2007.10.019.

[2] 王召旭.含风电场的电力系统动态经济调度的研究[D].华北电力大学(北京),2011.DOI:10.7666/d.y1954718.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值