✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
船舶运动规划是船舶自主航行中的核心问题,其目标是在满足船舶动力学约束、避开静态障碍物以及遵守国际海上避碰规则(COLREGs)的前提下,为船舶生成一条安全、高效的航行轨迹。传统的船舶运动规划方法往往难以应对复杂且动态的海上环境,尤其是在多种船舶遭遇场景下,如何确保COLREGs的严格遵从是一项极具挑战性的任务。本文将深入探讨基于模型预测人工势场(Model Predictive Artificial Potential Field, MPAPF)的船舶运动规划方法,重点讨论如何将COLREGs融入到规划框架中,从而提高船舶在复杂遭遇场景下的安全性与自主性。
1. 引言:海上交通复杂性与船舶自主航行需求
随着全球贸易的不断发展,海上交通日益繁忙,船舶遭遇的场景也变得越来越复杂。传统的航海依靠人工观察和经验判断,在面对快速变化的海上环境时,容易出现误判或反应滞后,导致安全隐患。因此,开发智能化的船舶运动规划系统,提升船舶在复杂环境下的自主航行能力,具有重要的理论意义和实际应用价值。
传统的运动规划方法,例如A*、D*等,在静态环境下表现良好,但难以适应动态变化的环境。人工势场法(Artificial Potential Field, APF)通过构建目标势场和障碍物势场,将船舶的航行问题转化为势能最小化问题,具有计算效率高、易于实现的优点。然而,APF法也存在局部极小值的问题,容易使船舶陷入局部最优解,无法到达目标点。此外,传统的APF法通常只考虑障碍物的静态避让,缺乏对COLREGs的考虑,难以保证船舶在复杂遭遇场景下的安全性。
2. 模型预测人工势场(MPAPF)方法概述
为了克服传统APF方法的不足,本文采用模型预测人工势场(MPAPF)方法进行船舶运动规划。MPAPF方法结合了模型预测控制(Model Predictive Control, MPC)和人工势场法(APF)的优点。MPC通过建立船舶的动力学模型,预测船舶未来一段时间内的运动轨迹,并根据预测结果进行优化控制。APF则为船舶提供全局性的引导,避免陷入局部极小值。
具体而言,MPAPF方法的流程如下:
- 船舶动力学模型建立:
首先,需要建立船舶的动力学模型,描述船舶的运动状态与控制输入之间的关系。考虑到船舶运动的非线性特性,通常采用非线性动力学模型,并通过适当的简化,提高计算效率。常见的船舶动力学模型包括三自由度(3-DOF)或五自由度(5-DOF)模型。
- 目标势场和障碍物势场构建:
构建目标势场,引导船舶向目标点移动;构建障碍物势场,斥斥力作用于船舶,使其远离障碍物。势场函数的选择需要考虑到障碍物的形状、大小以及安全距离,同时避免产生局部极小值。
- COLREGs约束的融入:
将COLREGs规则转化为约束条件,加入到MPAPF的优化问题中,确保船舶的运动轨迹符合COLREGs的要求。具体策略将在后文详细讨论。
- 预测控制和优化:
利用船舶动力学模型预测未来一段时间内的运动轨迹,并根据目标势场、障碍物势场和COLREGs约束,优化控制输入,使得船舶能够在满足约束条件的前提下,尽可能地接近目标点。
- 滚动优化:
在每一个控制周期内,重复上述预测控制和优化步骤,根据新的环境信息不断更新控制输入,从而实现动态的运动规划。
3. 复杂遭遇场景下COLREGs遵从性建模
COLREGs是船舶航行的基本准则,它规定了船舶在各种遭遇情况下的避让责任和行动准则。在复杂遭遇场景下,如何准确地识别遭遇态势,并制定符合COLREGs的避让策略,是船舶自主航行面临的关键挑战。
本文将COLREGs规则进行量化,并将其转化为MPAPF优化问题中的约束条件。具体而言,主要考虑以下几种常见的遭遇场景:
- 对遇局面(Head-on):
在对遇局面下,两船都应向右转向,以避免碰撞。本文通过计算两船的相对方位和距离,判断是否处于对遇局面。如果是,则在MPAPF的优化问题中加入转向约束,强制两船向右转向。
- 交叉局面(Crossing):
在交叉局面下,让路船应采取行动避免与直航船碰撞。本文通过计算两船的方位角和航速,判断谁是让路船,谁是直航船。如果是让路船,则在MPAPF的优化问题中加入减速或转向约束,使其采取避让行动。如果是直航船,则保持航速和航向,并监测让路船的行动,必要时采取紧急避让措施。
- 追越局面(Overtaking):
在追越局面下,追越船应采取行动避免与被追越船碰撞。本文通过计算两船的相对方位和航速,判断是否处于追越局面。如果是追越船,则在MPAPF的优化问题中加入转向约束,使其从被追越船的右舷通过。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇