GRNN神经网络+NSGAII多目标优化算法,工艺参数优化、工程设计优化!(Matlab)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

近年来,随着工业技术的快速发展,对产品性能、生产效率和资源利用率的要求日益提高。如何在满足多重目标约束的前提下,优化工艺参数和工程设计,成为提升行业竞争力的关键所在。传统优化方法在面对高维、非线性、多峰和多目标问题时,常常陷入局部最优解或计算复杂度过高。因此,探索更有效的优化算法具有重要的理论意义和实际应用价值。本文将着重讨论基于广义回归神经网络(Generalized Regression Neural Network,GRNN)和非支配排序遗传算法II(Non-dominated Sorting Genetic Algorithm II,NSGA-II)的多目标优化算法,并阐述其在工艺参数优化和工程设计优化中的应用潜力。

1. 多目标优化问题的挑战与解决方案

在工程实践中,优化问题往往具有多目标特性。例如,在材料加工过程中,我们需要同时优化产品的强度、韧性和成本;在桥梁设计中,我们需要兼顾桥梁的承载能力、稳定性以及建设成本。这些目标之间常常存在相互制约的关系,优化一个目标可能会损害另一个目标。因此,多目标优化问题需要寻找一组帕累托最优解(Pareto Optimal Solutions),即不存在其他解在所有目标上都优于该解。

传统的单目标优化算法无法直接解决多目标优化问题,需要将其转化为单目标问题。常用的方法包括加权求和法、约束法和目标规划法。然而,这些方法都需要预先设定权重或者约束条件,且可能丢失部分帕累托最优解。

以遗传算法为代表的进化算法,由于其群体搜索特性和对目标函数无特殊要求,非常适合于解决多目标优化问题。NSGA-II算法是其中一种广泛应用且高效的多目标优化算法。它通过非支配排序和拥挤度距离等机制,保证了算法的收敛性和解的多样性。

2. GRNN神经网络的优势与应用

在优化过程中,我们需要对工艺参数或工程设计方案进行评估,从而确定其对应的目标函数值。然而,很多情况下,目标函数的表达式难以显式给出,或者计算代价非常昂贵。例如,材料的力学性能测试需要耗费大量时间和资源,而复杂的结构分析则需要进行大量的有限元模拟。

为了解决上述问题,我们可以利用GRNN神经网络建立工艺参数或工程设计变量与目标函数之间的代理模型(Surrogate Model)。GRNN是一种基于非参数回归的神经网络,它具有强大的非线性拟合能力和快速的学习速度。与传统的神经网络相比,GRNN不需要迭代训练,只需一次性完成网络参数的设置,从而大大节省了训练时间。

GRNN的工作原理是基于样本数据的概率密度估计。当输入一个新的样本时,GRNN会计算该样本与训练样本之间的距离,并根据距离的远近赋予不同的权重。最终的输出结果是所有训练样本的加权平均值,权重的大小与样本之间的相似度成正比。这种基于实例的学习方法使得GRNN能够有效地逼近复杂的非线性函数。

GRNN在工艺参数优化和工程设计优化中具有广泛的应用前景。它可以用来建立工艺参数与产品性能之间的关系模型,或者建立工程设计变量与结构响应之间的关系模型。利用GRNN代理模型,我们可以快速评估不同设计方案的性能,从而减少昂贵的实验或模拟次数。

3. GRNN神经网络 + NSGA-II多目标优化算法的协同作用

将GRNN神经网络和NSGA-II算法结合起来,可以充分发挥两者的优势,实现对工艺参数和工程设计的有效优化。其基本流程如下:

  1. 数据收集与预处理:

     通过实验、模拟或历史数据,收集足够数量的工艺参数/工程设计变量和对应目标函数值的数据。对数据进行归一化处理,以提高模型的训练效率和精度。

  2. GRNN网络训练:

     利用收集到的数据训练GRNN神经网络,建立工艺参数/工程设计变量与目标函数之间的代理模型。选择合适的平滑因子,避免过拟合或欠拟合现象。

  3. NSGA-II算法初始化:

     初始化NSGA-II算法的种群,每个个体代表一组工艺参数/工程设计变量。

  4. 目标函数评估:

     利用训练好的GRNN网络,评估种群中每个个体的目标函数值。

  5. 非支配排序与拥挤度计算:

     对种群进行非支配排序,将个体分成不同的等级。对于同一等级的个体,计算其拥挤度距离,以保持种群的多样性。

  6. 选择、交叉与变异:

     根据非支配等级和拥挤度距离,选择优秀的个体进行交叉和变异操作,生成新的种群。

  7. 迭代优化:

     重复步骤4-6,直到满足设定的迭代次数或收敛条件。

  8. 结果分析:

     将最终得到的帕累托最优解集呈现给决策者,供其根据实际需求进行选择。

这种协同作用机制使得算法能够快速有效地搜索帕累托最优解。GRNN代理模型降低了目标函数评估的计算成本,而NSGA-II算法则保证了算法的收敛性和解的多样性。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值