【对抗神经网络】基于多智能体对抗神经网络的工业系统移动众包激励机制附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在工业 4.0 浪潮的推动下,工业系统移动众包凭借其高效整合分散资源、降低企业运营成本的优势,成为众多工业企业的新选择。然而,参与者积极性不足、任务分配不合理等问题严重制约了工业系统移动众包的发展,构建科学有效的激励机制迫在眉睫。传统激励机制在应对复杂多变的众包环境时往往力不从心,而多智能体对抗神经网络(Multi-Agent Generative Adversarial Networks,简称 MAGAN)的出现,为工业系统移动众包激励机制的创新提供了新方向。

工业系统移动众包与激励机制概述

工业系统移动众包的特点与应用场景

工业系统移动众包打破了传统工业生产模式的局限,利用移动设备和网络平台,将大量分散的个人或小型团队纳入工业任务执行体系。其特点包括任务碎片化、参与者来源广泛、执行过程灵活等。在实际应用中,工业系统移动众包已渗透到产品设计、质量检测、数据采集等多个环节。例如,在产品设计环节,企业通过众包平台征集全球设计师的创意方案,从中筛选出最具创新性和可行性的设计;在质量检测中,利用众包模式组织大量用户对产品进行实地体验和反馈,获取更全面真实的质量信息。

传统激励机制的困境

当前,工业系统移动众包常用的激励机制主要包括物质奖励、声誉激励等。物质奖励以金钱、礼品等形式对完成任务的参与者进行补偿,但单纯的物质奖励容易导致参与者只关注任务完成数量,忽视任务质量;声誉激励通过建立参与者的声誉等级,激励其积极表现,但这种方式在面对新参与者时效果不佳,且声誉评价体系的主观性较强,难以准确反映参与者的真实能力和贡献。此外,传统激励机制往往无法实时适应众包任务和参与者状态的动态变化,导致激励资源分配不合理,无法充分调动参与者的积极性。

多智能体对抗神经网络理论基础

对抗神经网络的基本原理

对抗神经网络(Generative Adversarial Networks,GAN)由生成器(Generator)和判别器(Discriminator)构成。生成器的任务是学习真实数据的分布规律,生成尽可能逼真的 “假数据”;判别器则负责区分输入数据是真实数据还是生成器生成的 “假数据”。在训练过程中,生成器和判别器不断对抗博弈,生成器的生成能力和判别器的判别能力逐步提升,最终达到一种动态平衡。例如,在图像生成领域,GAN 能够生成以假乱真的图像,生成器生成图像,判别器判断图像真假,两者相互竞争优化,实现图像生成质量的提升。

多智能体系统的引入与优势

多智能体系统(Multi-Agent System,MAS)由多个具有自主决策能力的智能体组成,这些智能体通过交互、协作和竞争来完成复杂任务。将多智能体系统引入对抗神经网络,形成多智能体对抗神经网络(MAGAN),可以使系统具备更强的适应性和决策能力。在 MAGAN 中,多个生成器和判别器可以分别代表不同的参与者或任务需求,通过智能体之间的交互和博弈,能够更好地处理工业系统移动众包中复杂多变的情况,实现激励机制的动态优化。

基于 MAGAN 的工业系统移动众包激励机制设计

系统架构设计

基于 MAGAN 的工业系统移动众包激励机制架构主要包含任务发布模块、多智能体对抗神经网络模块、激励分配模块和反馈评估模块。任务发布模块负责将工业任务分解为适合众包的子任务,并发布到众包平台;多智能体对抗神经网络模块是整个系统的核心,其中多个生成器对应不同的参与者,根据自身策略生成任务执行方案,判别器则对方案的优劣进行评估;激励分配模块根据多智能体对抗神经网络的评估结果,为参与者分配相应的激励资源;反馈评估模块收集参与者对任务和激励的反馈信息,用于优化多智能体对抗神经网络和激励分配策略。

智能体策略设计

在多智能体对抗神经网络模块中,生成器智能体根据自身的资源、能力和历史经验,生成任务执行策略,如选择执行哪些任务、投入多少资源等。判别器智能体则从任务完成质量、完成时间、成本等多个维度对生成器提交的策略进行评估。同时,智能体之间会进行信息交互和学习,生成器智能体通过学习判别器的反馈和其他生成器的成功经验,不断优化自身策略;判别器智能体也会根据生成器策略的变化,调整评估标准,从而实现整个系统的动态进化。

激励分配算法

激励分配算法以多智能体对抗神经网络的评估结果为基础,结合任务的难度系数、重要程度以及参与者的历史表现等因素,确定每个参与者应获得的激励资源。例如,对于高质量完成复杂任务的参与者,给予较高的物质奖励和声誉提升;对于积极参与但能力有限的新参与者,提供一定的培训资源和基础奖励,鼓励其提升能力。通过这种差异化的激励分配方式,既能激发参与者的积极性,又能促进整个众包群体的良性发展。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值