【SOC估计】基于卡尔曼滤波的储能电池荷电状态SOC估计研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本论文针对储能电池荷电状态(SOC)准确估计的难题,深入研究基于卡尔曼滤波的 SOC 估计方法。通过建立合适的电池等效电路模型,结合卡尔曼滤波算法原理,设计 SOC 估计方案。利用实验数据对不同卡尔曼滤波算法(扩展卡尔曼滤波 EKF、无迹卡尔曼滤波 UKF)的估计性能进行对比分析,包括估计精度、收敛速度和抗干扰能力等方面。结果表明,无迹卡尔曼滤波在处理电池非线性特性时表现更优,能更准确地估计电池 SOC,为储能电池的高效管理和安全运行提供可靠的技术支持。

关键词

储能电池;荷电状态;SOC 估计;卡尔曼滤波;扩展卡尔曼滤波;无迹卡尔曼滤波

一、引言

1.1 研究背景与意义

随着新能源技术的快速发展,储能电池在电动汽车、可再生能源并网、分布式储能系统等领域得到广泛应用 。准确估计储能电池的荷电状态(State of Charge,SOC)是实现电池有效管理、保障系统安全稳定运行的关键 。SOC 反映了电池当前剩余电量与额定容量的比值,它直接影响电池的充放电策略制定、系统能量优化配置以及电池寿命预测 。例如,在电动汽车中,精确的 SOC 估计有助于合理规划行驶里程,避免因电量耗尽导致的车辆抛锚;在储能电站中,准确的 SOC 信息能提高能量调度效率,降低运营成本 。然而,由于电池内部化学反应的复杂性、运行过程中的温度变化、老化等因素影响,难以通过直接测量获取准确的 SOC 值,因此研究高效、准确的 SOC 估计方法具有重要的现实意义。

1.2 研究现状

目前,常见的 SOC 估计方法包括安时积分法、开路电压法、神经网络法以及卡尔曼滤波法等 。安时积分法通过累计充放电电流对时间的积分来计算 SOC,原理简单,但存在累计误差,且无法补偿自放电等因素导致的误差 。开路电压法根据电池开路电压与 SOC 的对应关系进行估计,精度较高,但需要电池长时间静置,不适合实时动态估计 。神经网络法通过训练大量数据建立输入输出关系,能较好地处理非线性问题,但模型训练复杂,对数据依赖性强 。卡尔曼滤波法基于状态空间模型,利用系统的输入输出信息对状态变量进行最优估计,在处理动态系统和存在噪声干扰的情况下具有独特优势 。其中,扩展卡尔曼滤波(Extended Kalman Filter,EKF)通过对非线性系统进行线性化处理实现估计,无迹卡尔曼滤波(Unscented Kalman Filter,UKF)则利用无迹变换直接处理非线性问题,二者在电池 SOC 估计中均有应用,但在不同工况下的性能表现存在差异,仍需进一步研究和优化 。

1.3 研究内容与目标

本研究主要围绕基于卡尔曼滤波的储能电池 SOC 估计展开,具体内容包括:建立适用于卡尔曼滤波算法的电池等效电路模型;深入分析扩展卡尔曼滤波和无迹卡尔曼滤波算法原理,并将其应用于电池 SOC 估计;通过实验数据对比两种算法的估计性能,分析其优缺点;提出改进思路和优化方向,提高 SOC 估计的准确性和可靠性 。研究目标是找到一种在不同工况下都能高效、准确估计储能电池 SOC 的卡尔曼滤波方法,为储能系统的优化控制和电池管理提供技术支撑 。

二、储能电池模型与 SOC 定义

2.1 储能电池等效电路模型

2.1.1 常用电池模型介绍

常见的电池等效电路模型有 Rint 模型、Thevenin 模型、PNGV 模型等 。Rint 模型结构简单,仅由一个电阻和一个电压源组成,能粗略描述电池的充放电特性,但无法反映电池的极化现象 。Thevenin 模型在 Rint 模型基础上增加了一个 RC 网络,可较好地模拟电池的极化过程,适用于大多数工程应用场景 。PNGV 模型是美国新一代汽车合作计划提出的模型,考虑了更多电池特性,如温度、老化等因素的影响,但模型复杂度较高 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

[1] 高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池SOC估计[J].电工技术学报, 2011, 26(11):161-167.

[2] 张頔,马彦,柏庆文.基于自适应卡尔曼滤波的锂离子电池SOC估计[J].汽车技术, 2011(8):5.DOI:10.3969/j.issn.1000-3703.2011.08.011.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值