✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在航天技术飞速发展的当下,多卫星协同工作已成为获取海量地球观测数据、实现高效通信服务的重要手段。多卫星任务规划旨在合理安排多颗卫星的观测、通信等任务,以最大化任务收益 。然而,实际应用中,任务往往存在时间窗约束,即每个任务只能在特定的时间段内被卫星执行,这使得多卫星任务规划问题变得更为复杂。例如,在灾害监测中,对受灾区域的观测需要在灾害发生后的黄金时段内完成;在通信任务中,卫星与地面站的通信必须在两者可见的时间窗口内进行。准确且高效地求解带时间窗约束的多卫星任务规划问题,对于提升卫星系统的整体效能、降低运营成本以及满足多样化的应用需求具有至关重要的意义。
传统的求解方法,如启发式算法、分支定界法等,在处理大规模、复杂约束的多卫星任务规划问题时,存在求解效率低、容易陷入局部最优解等局限性。遗传算法作为一种模拟生物进化过程的智能优化算法,因其具有良好的全局搜索能力和较强的鲁棒性,在任务规划领域得到了广泛应用。但标准遗传算法在处理带时间窗约束的多卫星任务规划问题时,也面临着收敛速度慢、解的质量不高等问题。因此,对遗传算法进行改进,使其更适合求解此类问题,成为当前研究的热点方向。
二、带时间窗约束的多卫星任务规划问题分析
2.1 问题描述
带时间窗约束的多卫星任务规划问题可描述为:给定一组卫星,每颗卫星具有不同的能力参数,如观测分辨率、通信带宽、轨道参数等;同时给定一组任务,每个任务对应一个时间窗,表示该任务能够被卫星执行的时间段,且任务具有不同的优先级、收益值等属性。目标是在满足卫星资源约束(如能源限制、数据存储容量限制)和任务时间窗约束的前提下,合理分配卫星任务,确定每颗卫星执行任务的顺序和时间,以最大化任务的总收益或最小化任务的总完成时间等目标。
2.2 约束条件
- 时间窗约束:每个任务必须在其规定的时间窗内开始执行,若超出时间窗,则任务无法执行。例如,某观测任务的时间窗为 [10:00 - 10:30],卫星必须在该时间段内对目标区域进行观测。
- 卫星资源约束:
- 能源约束:卫星的能源由太阳能电池板和蓄电池提供,执行任务会消耗能源,卫星的能源消耗总量不能超过其能源供应能力。
- 数据存储容量约束:卫星的数据存储设备容量有限,执行观测等任务产生的数据量不能超过存储容量。
- 轨道约束:卫星沿着特定轨道运行,只有在卫星与任务目标处于可见范围内时,才能执行任务。例如,对于地球观测卫星,只有当卫星飞临目标区域上空时,才能进行观测。
- 任务互斥约束:部分任务之间存在互斥关系,即同一时间内一颗卫星只能执行一个任务,且某些任务不能同时被不同卫星执行。例如,卫星在进行高精度观测任务时,不能同时执行通信任务;两个相邻且观测范围有重叠的区域观测任务,不能被两颗卫星同时执行,以避免资源浪费。
三、改进遗传算法设计
3.1 编码方式
采用基于任务 - 卫星的混合编码方式。将任务和卫星进行统一编码,每个基因位对应一个任务 - 卫星对,表示该任务由对应的卫星执行。例如,编码串 “[任务 1 - 卫星 A,任务 2 - 卫星 B,任务 3 - 卫星 A,...]” 表示任务 1 由卫星 A 执行,任务 2 由卫星 B 执行,任务 3 由卫星 A 执行。同时,为了表示任务的执行顺序,在编码中引入顺序标识,通过对基因位的排序来确定任务的执行顺序。这种编码方式能够直观地表示任务与卫星的分配关系,同时便于后续的遗传操作和约束处理。
3.2 初始种群生成
在生成初始种群时,充分考虑问题的约束条件。首先,随机生成任务 - 卫星的分配组合,但要确保每个任务的时间窗约束和卫星资源约束得到满足。例如,对于能源约束,计算每个卫星执行任务的预计能源消耗,确保不超过卫星的能源供应能力;对于时间窗约束,检查任务的执行时间是否在其规定的时间窗内。若生成的个体不满足约束条件,则重新生成,直到生成满足约束条件的初始种群个体。通过这种方式生成的初始种群,具有更高的可行性,能够提高算法的搜索效率。
3.3 遗传操作改进
- 选择操作:采用轮盘赌选择与精英保留策略相结合的方式。轮盘赌选择根据个体的适应度值计算其被选中的概率,适应度值越高,被选中的概率越大,这种方式能够使优秀个体有更大的机会遗传到下一代。同时,为了防止优秀个体在进化过程中丢失,采用精英保留策略,将当前种群中适应度最高的若干个个体直接复制到下一代种群中,保证种群的进化方向。
- 交叉操作:设计基于任务优先级和时间窗的交叉算子。在交叉过程中,首先根据任务的优先级对基因位进行分类,优先交换高优先级任务的基因位。同时,考虑任务的时间窗约束,确保交叉后生成的新个体中任务的执行时间仍在其时间窗内。例如,对于两个父代个体,选择高优先级任务对应的基因位进行交叉交换,然后检查交换后任务的执行时间是否满足时间窗约束,若不满足,则进行调整或重新选择交叉位置。
- 变异操作:提出基于局部搜索的变异策略。在变异时,随机选择一个基因位进行变异,即改变任务 - 卫星的分配关系。变异后,对该基因位对应的任务进行局部搜索,尝试调整其执行顺序或更换执行卫星,以进一步优化个体的适应度。例如,当某个任务的执行时间接近其时间窗边界时,通过局部搜索尝试将其调整到更合适的时间或更换更合适的卫星执行,以提高个体的适应度。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇