图像分割是指将图像中属于某一类的像素点与其他像素点分开,
例如:
在黑白相间的图像中,
将黑色和白色分开就是图像分割.图像分割对于提取图像中的重要信息具有重要的作用.准确的图
像分割有助于提高对图
像内容的理解,
以及后续的图像处理.常见的图像分割算法有漫水填充法、
分水岭法、
Gr
abc
ut
法、
Mean-
Shift
法和
KM
eans
法,本
节中
将介绍前4种图像分割方法.
1.漫水填充法:
漫水填充
法是根据像素灰度值之间的差值寻找相同区域以
实现分割.我们可以将图像的灰度值理解成像素点高度,
这样一幅图像可以看成崎岖不平的地面或者山地,向地面上某一个低洼的地方倾倒一定量的水,水将掩盖低于某个高度的区域.漫水填充法利用的就是这样的原理:
其形式与注水相似,因此被形象地称为
漫水"。
与向地面注水一致,
漫水填充法也需要在图像选择一个
注水
像素,该像素称为种子点,种子点按照一定规则不断向外扩散,
从而形成具有相似特征的独立区域,
进而实现图像分割。
漫水填充分三个步骤:
第一步:
选择种子点:(x,y)
.
第二步:
以种子
点为中心,
判断4
邻域或者8
邻域的像素值与种子点像素值的差值,将差值
小于阈值的像素点添加进区域内。
第三步:
将新加入的像素点作为新的种子点,
反复执行第二步,
直到没有新的像素点被添加进
该区域为止.
floodFill()函数用于实现漫水填充法分割图像
该函数有两种原型:
void visionagin::Myfloodfill()
{
system("color F0");//dos界面转换成白底
Mat img = imread("C:\\Users\\86176\\Downloads\\visionimage\\gaoda.jfif");
int connectivity = 4;//邻域
RNG rng(10086);
Mat mask = Mat::zeros(img.rows + 2, img.cols + 2, CV_8UC1);
Scalar lo = Scalar(20,20,20);
Scalar up = Scalar(20, 20, 20);
int flag = connectivity | (255 << 8) | FLOODFILL_FIXED_RANGE;//漫水填充法标志
while (true)
{
//构造漫水中心点
int py = rng.uniform(0, img.rows - 1);
int px = rng.uniform(0, img.cols - 1);
Point point = Point(px, py);
//彩色图像中填充的颜色
Scalar newval = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
int num=floodFill(img, mask, point, newval,0, lo, up, flag);
//输出漫水填充像素点和数目
cout << point.x <<" and " << point.y << endl;
cout << "num is :" << num << endl;
imshow("分割后填充图像", img);
imshow("掩码图像", mask);
int c = waitKey(10);
if (c==27)
{
break;
}
}
}
2.分水岭法
分水岭法与漫水填充法相似,都是模拟水淹过地面或山地的场景,区别在于漫水填充法是从某
个像素值进行分割,
是一种局部分割算法,而分水岭法是从全局出发,需要对全局进行分割.
分水岭法会在多个局部最低点开始注水,随着注水量的增加,水位越来越高"淹没"局部像
素值较小的像素点,最后两个相邻的凹陷区域的"水"会汇集在一起,并在汇集处形成了"分水岭。
"分水岭"的计算过程是一个迭代标注的过程,经典的计算方式主要分为以下两个步骤.
第一步,排序过程:
首先对图像像素的灰度级进行排序
确定灰度值较小的像索点,该像素点
即为开始注水点.
第二步,淹没"过程:
对每个最低点开始不断"注水气不断"淹没"周围的像素点,不同"注水"处的"水"汇集在一起,形成分割线.
通过图像的边缘区域对图像进行标记,
首先利用 canny
函数计算图像的边缘,之后利用 fi
ndCon
to
urs
函数计算图像中的连通域,并通过 d
rawContours
函数绘制连通域得到符合格式要求的标记图像 最后利用
watershed
函数对图像进行分割.为了增加分割后不同区域之
间的对比度,
随机对不同区域进行上色.
void visionagin:: Mywatershed()
{
Mat img = imread("C:\\Users\\86176\\Downloads\\visionimage\\std.jfif");
Mat img_gry, img_canny;
cvtColor(img, img_gry, COLOR_BGR2GRAY);
GaussianBlur(img_gry, img_gry, Size(3, 3), 10, 20);
//提取边缘并进行闭运算
Canny(img_gry, img_canny, 100, 255);
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
morphologyEx(img_canny, img_canny, MORPH_CLOSE, kernel);
imshow("原图像", img);
imshow("边缘", img_canny);
vector<vector<Point>> contours;
//计算连通域数目
findContours(img_canny, contours, RETR_TREE, CHAIN_APPROX_SIMPLE);
//在Mat maskwatershed绘制轮廓,用于存放watershed 的结果
Mat maskwatershed = Mat::zeros(img_canny.size(), CV_32S);
for (int i = 0; i < contours.size(); ++i)
{
drawContours(maskwatershed, contours, i, Scalar::all(i + 1),-1);
}
watershed(img, maskwatershed);
//随机生成几种颜色
vector<Vec3b>colors;
RNG rng(10086);
for (int j = 0; j < contours.size(); j++)
{
int b = theRNG().uniform(0, 255);
int g = theRNG().uniform(0, 255);
int r = theRNG().uniform(0, 255);
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
}
//显示图像
Mat result = Mat::zeros(img.size(), CV_8UC3);
for (int row = 0; row < img_canny.rows; row++)
{
for (int col = 0; col < img_canny.cols; col++)
{
int index = maskwatershed.at<int>(row, col);//必须使用大于0的整数索引
if (index == -1)//边界
{
result.at<Vec3b>(row, col) = Vec3b(255, 255, 255);
}
else if (index<=0 || index>contours.size())//没有标记清楚的区域
{
result.at<Vec3b>(row, col) = Vec3b(0, 0, 0);
}
else
{
result.at<Vec3b>(row, col) = colors[index - 1];
}
}
}
result = result * 0.6 + img * 0.4;
imshow("分水岭法结果", result);
//绘制每个区域的图像
for (int n = 0; n < contours.size(); ++n)
{
Mat output = Mat::zeros(img.size(), CV_8UC3);
for (int row = 0; row < img_canny.rows; row++)
{
for (int col = 0; col < img_canny.cols; col++)
{
int index = maskwatershed.at<int>(row, col);//必须使用大于0的整数索引
if (index == n)//边界
{
output.at<Vec3b>(row, col) = img.at<Vec3b>(row, col);
}
else
{
output.at<Vec3b>(row, col) = Vec3b(0, 0, 0);
}
}
}
imshow(to_string(n), output);
}
}
3.Grabcut法
Grabcut
法是重要的图像分割算法,其使用高斯混合模型估计目标区域
背景和前景.该算法
通过迭代的方法解决了能量函数最小化的问题,
使得结果具有更高的可靠性.
OpenCV
提供了利
Grabcut
算法分割图像的
grab
Cut
函数 .
void visionagin::Mygrabcut()
{
Mat img = imread("C:\\Users\\86176\\Downloads\\visionimage\\std.jfif");
if (img.empty() == true)
{
cout << "读取失败!" << endl;
}
Mat imgcopy;
img.copyTo(imgcopy);
//绘制矩形
Rect r =Rect(20, 20, 200, 200);
rectangle(imgcopy, r, Scalar(0, 0, 200), 1);
imshow("选择的roi区域", imgcopy);
//进行分割
Mat bgmodel = Mat::zeros(1, 65, CV_64FC1);
Mat fgmodel = Mat::zeros(1, 65, CV_64FC1);
Mat mask = Mat::zeros(img.size(), CV_8UC1);
grabCut(img, mask, r, bgmodel, fgmodel, 5, GC_INIT_WITH_RECT);
//绘制结果
Mat result;
for (int i = 0; i < mask.rows; ++i)
{
for (int j = 0; j < mask.cols; j++)
{
int n = mask.at<uchar>(i, j);
//将明显为前景和可能为前景的结果保留
if (n == 1 || n == 3)
{
mask.at<uchar>(i, j)=255;
}
//将明显为背景和可能为背景的剔除
else
{
mask.at<uchar>(i, j) = 0;
}
}
}
bitwise_and(img, img, result, mask);
imshow("result", result);
}
4.Mean-Shift法
void visionagin::Mymean_shift()
{
Mat img = imread("C:\\Users\\86176\\Downloads\\visionimage\\keys1.jfif");
if (img.empty() == true)
{
cout << "读取失败!" << endl;
}
resize(img, img, Size(400, 400));
imshow("原图", img);
Mat result1, result2;
TermCriteria T1 = TermCriteria(TermCriteria::COUNT | TermCriteria::EPS, 10, 0.1);
pyrMeanShiftFiltering(img, result1, 20, 40, 2, T1);//第一次分割
pyrMeanShiftFiltering(result1, result2, 20, 40, 2, T1);//第二次分割
//显示分割结果
imshow("result1", result1);
imshow("result2", result2);
Mat imgcanny, res1canny, res2canny;
Canny(img, imgcanny, 150, 300);
Canny(result1, res1canny, 150, 300);
Canny(result2, res2canny, 150, 300);
imshow("imgcanny", imgcanny);
imshow("res1canny", res1canny);
imshow("res2canny", res2canny);
}