云GPU配置环境 恒源云

点击"立即租"  然后选择自己的环境  我这里是 torch==1.13.1  cu116  python3.8

接下来在 点击无卡启动 配置环境  

这里建议无卡 状态配置环境,传输数据。

1. 打开 JupyterLab

2. 创建环境

conda create -n py38 python==3.8

py38是自定义的环境名称   python==3.8是创建实例时选择的python环境

输入 y  同意即可

3. 激活环境

conda activate py38

4. 根据创建实例的环境,在pytorch官网找到对应的链接直接pip安装,这里因为注意是linux系统,网速很快一般不会卡住

pytorch 官网   https://pytorch.org/get-started/previous-versions/  找到自己的环境 

我这里是 torch==1.13.1  cu116  python3.8

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

5. 配置成功 可以再安装自己需要的库   也可以在pycharm上激活环境,终端上安装

pip install tensorboard 

pip install opencv-python 等 sicpy six tqdm

### YOLOv8在恒源云环境中的配置教程 要在恒源云环境中成功搭建并运行YOLOv8模型,可以按照以下方法完成必要的环境配置和操作流程。 #### 1. 创建恒源云计算实例 首先,在恒源云平台创建一个新的计算实例。确保选择支持CUDA的GPU型号以加速深度学习任务[^2]。推荐选用NVIDIA GPU系列设备,因为其兼容性强且性能优越。 #### 2. 连接至远程服务器 通过SSH工具或者利用Visual Studio Code插件连接到所创建的虚拟机上。对于更便捷的操作体验,建议参照AI酱油君分享的方法设置VSCode与恒源云之间的链接方式。这一步骤能够极大提升开发效率以及文件管理便利度。 #### 3. 安装依赖库 进入终端界面后执行如下命令安装Python及其科学计算所需的基础包: ```bash sudo apt update && sudo apt install python3-pip git -y pip3 install --upgrade pip setuptools wheel ``` 接着克隆官方 Ultralytics 的 GitHub仓库获取最新版本YoloV8代码: ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics/ ``` 随后依据项目需求加载相应框架和其他必要组件: ```bash pip3 install -r requirements.txt ``` #### 4. 验证PyTorch及CUDA状态 为了确认当前系统已正确定位到可用显卡资源,请尝试打印torch.cuda.is_available()函数返回值: ```python import torch print(torch.cuda.is_available()) ``` 如果输出True,则说明一切正常;反之则需排查驱动程序或重新编译对应模块[^1]。 #### 5. 准备数据集 将自定义的数据上传至端存储路径下,并依照COCO格式整理标注信息。具体可参阅Ultralytics文档了解详情。 #### 6. 开始训练过程 最后指定参数启动训练脚本即可: ```python from ultralytics import YOLO model = YOLO('yolov8n.yaml') # 加载预设架构 results = model.train(data='path/to/dataset', epochs=100, imgsz=640) ``` 以上即为基于恒源云部署YOLOv8的整体解决方案概述。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值