目录
在算法竞赛的世界里,尼姆问题是一类经典的博弈问题。今天,我们要探讨的是尼姆问题的一个变体 —— 阶梯博弈,通过具体题目来深入理解其原理并实现 Java 代码求解。
一、阶梯博弈原理
1. 游戏场景
想象在一个类似梯子的结构上,分布着一些障碍物(或棋子等)。有两个参与者,他们轮流进行操作,每次只能朝着一个方向移动障碍物(或棋子),直到一方无法移动,该方即为输家。
2. 问题转化与堆的划分
要判断这类问题是否属于尼姆问题,关键在于巧妙的转化。我们可以像处理尼姆问题分堆那样来分析。
- 当障碍物(或棋子)数量为奇数时,把第一个棋子和头部之间的间隔当作一堆的数量,然后依次将相邻两个棋子的间隔当作一堆的数量(中间间隔不管)。例如,有三个棋子,位置分别为 1、3、5,那么第一堆数量为 1 - 0 = 1,第二堆数量为 3 - 1 = 2,第三堆数量为 5 - 3 = 2。先走的人移动棋子相当于改变了某堆 “石子” 的数量,而后走的人可以通过特定策略维持尼姆堆的性质不变。
- 当障碍物(或棋子)数量为偶数时,将相邻两个棋子的间隔(除了第一个棋子前面的间隔)当作尼姆堆中元素的数量。比如有四个棋子在位置 1、3、6、8,那么尼姆堆数量分别为 3 - 1 = 2,6 - 3 = 3,8 - 6 = 2。
3. 取胜策略
- 对于偶数个棋子的情况,如果先手能将棋子移动到使相邻棋子间隔都相等(或只剩下一个间隔为 0 的相邻棋子对),那么后手无论怎么动,先手都可以保持这种平衡状态,直到后手无法移动,先手获胜。
- 对于奇数个棋子的情况,通过计算尼姆堆的异或和来判断胜负。如果异或和为 0,后手有必胜策略;如果异或和不为 0,先手有必胜策略。
二、题目解析与代码实现
1. 题目概述
以 POJ 1704 为例,题目描述了格鲁吉亚和 Bob 玩走棋子的游戏。给定棋子在无限长数组上的位置,格鲁吉亚先走,Bob 后走,问谁会赢。POJ 的输入格式较为繁琐,第一个数字表示测试用例数量,每个测试用例中,数字表示棋子所在位置,连续的数字表示棋子紧密相邻。
2. Java 代码实现
import java.util.Arrays;
import java.util.Scanner;
public class StaircaseNim {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt();
while (t-- > 0) {
int n = scanner.nextInt();
int[] positions = new int[n];
for (int i = 0; i < n; i++) {
positions[i] = scanner.nextInt();
}
Arrays.sort(positions);
int result = 0;
if (n % 2 == 1) {
for (int i = 0; i < n; i += 2) {
if (i == 0) {
result ^= (positions[i] - 1);
} else {
result ^= (positions[i] - positions[i - 1] - 1);
}
}
} else {
for (int i = 1; i < n; i += 2) {
result ^= (positions[i] - positions[i - 1] - 1);
}
}
if (result == 0) {
System.out.println("Bob will win");
} else {
System.out.println("Georgia will win");
}
}
}
}
3. 代码解释
- 首先,我们使用
Scanner
读取输入数据,包括测试用例数量t
和每个测试用例中的棋子位置。 - 对棋子位置进行排序是关键步骤,因为题目中虽然给出的例子是有序的,但实际测试数据可能是乱序的。
- 根据棋子数量的奇偶性,分别计算尼姆堆的异或和。
- 最后,根据异或和的值判断先手和后手谁会获胜。
三、竞赛中的应用与注意事项
在竞赛中,像 “高僧斗法” 这类题目也涉及到阶梯博弈的思想。很多选手由于不熟悉尼姆问题及其变体,可能会采用暴力破解等方法,往往导致超时。因此,识别这类问题并运用正确的解法至关重要。
在处理 POJ 1704 这类题目时,要特别注意输入数据的格式和可能的乱序情况,确保代码的鲁棒性。希望通过对阶梯博弈的学习,大家在遇到类似问题时能够快速准确地解决。
以上就是本次关于阶梯博弈的分享,希望对大家有所帮助。如果有任何疑问或建议,欢迎在评论区留言。