尼姆问题变体之阶梯博弈:从原理到代码实现

目录

尼姆问题变体之阶梯博弈:从原理到代码实现

一、阶梯博弈原理

1. 游戏场景

2. 问题转化与堆的划分

3. 取胜策略

二、题目解析与代码实现

1. 题目概述

2. Java 代码实现

3. 代码解释

三、竞赛中的应用与注意事项


在算法竞赛的世界里,尼姆问题是一类经典的博弈问题。今天,我们要探讨的是尼姆问题的一个变体 —— 阶梯博弈,通过具体题目来深入理解其原理并实现 Java 代码求解。

一、阶梯博弈原理

1. 游戏场景

想象在一个类似梯子的结构上,分布着一些障碍物(或棋子等)。有两个参与者,他们轮流进行操作,每次只能朝着一个方向移动障碍物(或棋子),直到一方无法移动,该方即为输家。

2. 问题转化与堆的划分

要判断这类问题是否属于尼姆问题,关键在于巧妙的转化。我们可以像处理尼姆问题分堆那样来分析。

  • 当障碍物(或棋子)数量为奇数时,把第一个棋子和头部之间的间隔当作一堆的数量,然后依次将相邻两个棋子的间隔当作一堆的数量(中间间隔不管)。例如,有三个棋子,位置分别为 1、3、5,那么第一堆数量为 1 - 0 = 1,第二堆数量为 3 - 1 = 2,第三堆数量为 5 - 3 = 2。先走的人移动棋子相当于改变了某堆 “石子” 的数量,而后走的人可以通过特定策略维持尼姆堆的性质不变。
  • 当障碍物(或棋子)数量为偶数时,将相邻两个棋子的间隔(除了第一个棋子前面的间隔)当作尼姆堆中元素的数量。比如有四个棋子在位置 1、3、6、8,那么尼姆堆数量分别为 3 - 1 = 2,6 - 3 = 3,8 - 6 = 2。

3. 取胜策略

  • 对于偶数个棋子的情况,如果先手能将棋子移动到使相邻棋子间隔都相等(或只剩下一个间隔为 0 的相邻棋子对),那么后手无论怎么动,先手都可以保持这种平衡状态,直到后手无法移动,先手获胜。
  • 对于奇数个棋子的情况,通过计算尼姆堆的异或和来判断胜负。如果异或和为 0,后手有必胜策略;如果异或和不为 0,先手有必胜策略。

二、题目解析与代码实现

1. 题目概述

以 POJ 1704 为例,题目描述了格鲁吉亚和 Bob 玩走棋子的游戏。给定棋子在无限长数组上的位置,格鲁吉亚先走,Bob 后走,问谁会赢。POJ 的输入格式较为繁琐,第一个数字表示测试用例数量,每个测试用例中,数字表示棋子所在位置,连续的数字表示棋子紧密相邻。

2. Java 代码实现

import java.util.Arrays;
import java.util.Scanner;

public class StaircaseNim {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int t = scanner.nextInt();
        while (t-- > 0) {
            int n = scanner.nextInt();
            int[] positions = new int[n];
            for (int i = 0; i < n; i++) {
                positions[i] = scanner.nextInt();
            }
            Arrays.sort(positions);

            int result = 0;
            if (n % 2 == 1) {
                for (int i = 0; i < n; i += 2) {
                    if (i == 0) {
                        result ^= (positions[i] - 1);
                    } else {
                        result ^= (positions[i] - positions[i - 1] - 1);
                    }
                }
            } else {
                for (int i = 1; i < n; i += 2) {
                    result ^= (positions[i] - positions[i - 1] - 1);
                }
            }

            if (result == 0) {
                System.out.println("Bob will win");
            } else {
                System.out.println("Georgia will win");
            }
        }
    }
}

3. 代码解释

  • 首先,我们使用Scanner读取输入数据,包括测试用例数量t和每个测试用例中的棋子位置。
  • 对棋子位置进行排序是关键步骤,因为题目中虽然给出的例子是有序的,但实际测试数据可能是乱序的。
  • 根据棋子数量的奇偶性,分别计算尼姆堆的异或和。
  • 最后,根据异或和的值判断先手和后手谁会获胜。

三、竞赛中的应用与注意事项

在竞赛中,像 “高僧斗法” 这类题目也涉及到阶梯博弈的思想。很多选手由于不熟悉尼姆问题及其变体,可能会采用暴力破解等方法,往往导致超时。因此,识别这类问题并运用正确的解法至关重要。

在处理 POJ 1704 这类题目时,要特别注意输入数据的格式和可能的乱序情况,确保代码的鲁棒性。希望通过对阶梯博弈的学习,大家在遇到类似问题时能够快速准确地解决。

以上就是本次关于阶梯博弈的分享,希望对大家有所帮助。如果有任何疑问或建议,欢迎在评论区留言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值