
数据库
文章平均质量分 75
阿贾克斯的黎明
不会弹钢琴的程序员不是一个好的电气工程师
展开
-
SQL 注入攻击全解析:恶意语句拼接原理与防御指南
绝不信任任何用户输入,始终将数据与代码隔离。对于开发者而言,需养成 “预编译优先” 的编码习惯,避免直接拼接 SQL;对于企业而言,应建立涵盖代码审计、入侵检测、权限管理的立体化防护体系。原创 2025-05-18 23:49:46 · 960 阅读 · 0 评论 -
探秘数据库核心:七大基础运算解析与实战指南
向量化执行:按列批量处理数据,提升投影运算效率 5-10 倍。分布式连接:通过哈希分区将大表拆解,在各节点并行执行连接运算。AI 优化器:机器学习算法自动选择最优运算顺序,如预测笛卡尔积规模动态调整连接策略。对于数据从业者而言,深入理解基础运算不仅是编写高效 SQL 的前提,更是驾驭复杂数据架构的核心能力。当我们在业务报表中看到精准的数据分析结果时,背后正是这些 “简单” 运算在千万次的默默协作,编织着数据世界的底层秩序。原创 2025-05-18 23:44:17 · 868 阅读 · 0 评论 -
事务的特性及其在数据库和应用开发中的重要性
概念:事务是一个不可分割的工作单元,要么全部执行成功,要么全部回滚到事务开始前的状态。这意味着在事务执行过程中,所有对数据库的操作要么都成功完成,要么都不产生任何效果。例如,一个银行转账事务,从账户 A 转出一定金额并转入账户 B,这个过程中要么两个操作都成功执行,完成转账;要么如果在任何一个环节出现问题(如账户 A 余额不足、网络故障等),整个事务都要回滚,就像这个转账操作从未发生过一样,确保数据的一致性。示例。原创 2024-10-29 21:22:29 · 937 阅读 · 0 评论 -
服务网格:微服务架构的升级之选
MySQL 有四种事务隔离级别,它们规定了在多个事务并发执行时可能出现的脏读、不可重复读和幻读问题。InnoDB 在可重复读(RR)隔离级别下成功解决了幻读问题。幻读是指在同一个事务中,对相同范围进行前后两次查询时,结果不一致的情况。例如,在第一个事务里执行范围查询,此时满足条件的数据只有一条。当第二个事务插入一行数据并提交后,第一个事务再次查询时,结果比第一次多了一条数据,这就产生了幻读,并且会导致数据一致性问题。原创 2024-10-26 18:15:17 · 610 阅读 · 0 评论 -
InnoDB 如何解决幻读问题:深入解析 MySQL 事务隔离
MySQL 有四种事务隔离级别,这些隔离级别规定了当多个事务并发执行时可能出现的脏读、不可重复读和幻读问题。其中,InnoDB 在可重复读(RR)隔离级别下解决了幻读问题。幻读是指在同一个事务中,前后两次查询相同范围的时候,得到的结果不一致。例如,在第一个事务里执行一个范围查询,此时满足条件的数据只有一条。当第二个事务插入一行数据并提交后,第一个事务再次查询时,结果比第一次查询多了一条数据,这就产生了幻读,幻读会导致数据一致性问题。原创 2024-10-26 18:09:29 · 630 阅读 · 0 评论 -
探索常见数据库及存储技术:内部结构与适用场景全解析
在当今数字化时代,各种数据库及存储技术层出不穷,为不同的应用场景提供了强大的支持。本文将深入探讨 Elasticsearch(ES)、Neo4j、Redis、MySQL、MongoDB 以及其他一些常见的数据库和存储技术,解析它们的内部结构和适用场景。原创 2024-10-18 13:55:58 · 697 阅读 · 0 评论 -
数据处理与文本分析的关键技术分类解析
计算公式为:余弦相似度 = (A·B) / (|A|×|B|),其中 A·B 是向量 A 和向量 B 的点积,|A|和|B|分别是向量 A 和向量 B 的模。- 基于用户的协同过滤:找到与目标用户兴趣相似的其他用户,将相似用户喜欢而目标用户未接触过的物品推荐给目标用户。- 基于物品的协同过滤:计算物品之间的相似度,将与目标用户已喜欢物品相似的物品推荐给目标用户。- 情感词典方法:查找文本中的情感词,并根据情感词的极性和强度来判断文本的情感倾向。- 文本分类:提取每个类别的关键特征词,对新文本进行分类。原创 2024-10-03 22:43:43 · 360 阅读 · 0 评论 -
SQL 的基础知识汇总
子查询是嵌套在另一个查询中的查询,可以用于在一个查询中使用另一个查询的结果。用于从多个表中检索数据,根据不同的连接条件组合表中的行。原创 2024-10-02 21:49:13 · 1124 阅读 · 0 评论 -
缓存与数据库双写不一致问题及解决方案
在高并发的情况下,如果一个请求更新了数据库,另一个请求在数据库更新完成后但缓存删除之前读取了旧数据并存入缓存,可能会导致短暂的数据不一致。- 避免了缓存和数据库之间的数据不一致问题,因为在更新数据库后,缓存中的数据被删除,下次读取数据时会从数据库中重新加载最新的数据到缓存中。- 如果在更新数据库后,更新缓存之前发生了故障,那么缓存中的数据就会与数据库中的数据不一致。- 如果在更新缓存后,更新数据库之前发生了故障,那么数据库中的数据就会与缓存中的数据不一致。3. 消费消息队列中的消息,更新缓存中的数据。原创 2024-09-29 13:29:17 · 492 阅读 · 0 评论 -
区分度不高的字段与索引:作用及考量
例如,用户表和订单表连接查询中,以性别作为连接条件之一时,在用户表性别字段建立索引可帮助数据库更快找到具有特定性别的用户记录,与订单表中的记录进行匹配。因此,在决定是否在区分度不高的字段上建立索引时,需权衡查询性能的提升和索引维护成本的增加。例如,性别字段虽只有两个可能的值,但如果大部分用户都是男性,只有少数用户是女性,那么在性别字段上建立索引可快速定位到女性用户的记录。若一个字段的区分度很低,意味着该字段的取值相对集中,可能只有少数几个不同的值,比如存储用户性别的字段通常只有男和女两个可能的值。原创 2024-09-28 22:25:54 · 477 阅读 · 0 评论 -
外键之思:为何不被推荐使用?
例如,在一个电商系统中,如果决定将客户表的主键从客户 ID 改为客户邮箱地址,那么所有引用客户表的外键都需要进行相应的修改,这会增加系统维护的难度。这会增加额外的开销,特别是在高并发的情况下,可能会导致性能下降。- 例如,在一个电商系统中,如果业务规则发生变化,允许订单存在没有客户关联的情况,那么就需要修改订单表的外键约束,这可能会影响到其他相关的业务逻辑。- 例如,在一个分布式电商系统中,如果订单表和客户表分布在不同的数据库节点上,外键约束的检查可能需要通过网络进行,这会影响性能和可扩展性。原创 2024-09-28 22:14:08 · 484 阅读 · 0 评论 -
为何大厂不建议使用多表 JOIN?
用户表存储用户的信息,订单表存储用户的订单信息,商品表存储商品的信息。例如,如果经常需要查询用户的订单信息和商品信息,可以在订单表中冗余存储商品的一些关键信息,这样就可以直接从订单表中获取所需的数据,而不需要连接商品表。例如,在电商系统中,可以在订单服务中获取用户的订单信息,然后通过调用商品服务获取订单中的商品信息,最后在服务层将这些数据进行聚合返回给客户端。- 例如,在一个大型的企业级应用中,如果有多个复杂的表进行 JOIN 操作,可能会使数据库服务器的负载过高,影响整个系统的性能。原创 2024-09-28 22:04:01 · 398 阅读 · 0 评论 -
深入理解存储过程:优势、弊端及与其他技术的对比
缓存和优化的局限性,虽然存储过程在某些情况下可以提高性能,但是数据库系统对存储过程的缓存和优化并不一定总是最优的。- 不同数据库系统的差异,存储过程通常是针对特定的数据库系统编写的,不同的数据库系统在语法、函数和特性上存在很大的差异。- 难以预测的性能问题,存储过程的性能还可能受到其他因素的影响,例如数据库的负载、并发访问量等。- 减少网络通信开销,存储过程在数据库服务器上执行,避免了频繁的客户端与服务器之间的网络通信,尤其对于复杂的数据库操作,性能提升显著。它既有一定的优势,也存在一些明显的弊端。原创 2024-09-28 21:55:54 · 371 阅读 · 0 评论 -
MySQL 8 中的索引跳跃扫描
如果一个查询只针对 col2 列进行条件筛选,在没有索引跳跃扫描的情况下,数据库可能需要进行全表扫描或者使用不太高效的索引查找方式。然后,对于每个 col2 值的分组,数据库引擎会快速定位到该分组在索引中的起始位置,并扫描该分组中的行,以确定是否满足其他查询条件。例如,如果 col2 列的值只有少数几种不同的值,传统的索引查找可能效率不高,而索引跳跃扫描可以快速定位到不同 col2 值的分组。当查询涉及到多列索引,并且查询条件只针对索引中的部分列时,传统的索引查找方式可能无法高效地满足查询需求。原创 2024-09-28 21:43:12 · 446 阅读 · 0 评论 -
TRUNCATE、DELETE 和 DROP 的区别
使用 TRUNCATE 的优点在于可以快速清空表数据,释放存储空间,并且不会产生大量的事务日志,适用于需要快速清空表数据并重新开始插入新数据的情况。与 TRUNCATE 相比, DELETE 更加灵活,可以根据条件删除数据,并且可以用于有外键约束的表。但是,它的执行速度相对较慢,尤其是在删除大量数据时,因为它需要逐行进行删除操作,并且会产生事务日志。- 如果确定不再需要某个表,需要完全删除表的结构和数据,可以使用 DROP。DROP 用于删除整个表,包括表的结构、数据、索引等所有相关内容。原创 2024-09-28 21:37:36 · 315 阅读 · 0 评论 -
MySQL 深度分页优化策略
随着 OFFSET 值的增大,MySQL 需要扫描更多的行才能返回所需的结果。尽量避免使用非常大的 OFFSET 值,可以通过其他方式来实现分页,比如使用键值对或者游标来记录上次查询的位置。通过合理使用索引、限制结果数量、使用子查询和缓存等方法,可以显著提高深度分页查询的性能。对于一些频繁访问的分页结果,可以考虑使用缓存技术,如 Redis 等。将查询结果缓存起来,下次相同的查询可以直接从缓存中获取结果,而不需要再次查询数据库。可以根据实际需求,限制每页显示的记录数量,减少不必要的数据传输和处理。原创 2024-09-28 21:33:59 · 550 阅读 · 0 评论 -
索引失效,何时反能提升效率?
对于频繁更新的表,维护索引会带来额外的开销。如果在 table1 上有一个针对 some_column 的索引,在 table2 上有一个针对 another_column 的索引,数据库在处理这个查询时可能会在选择索引上花费大量时间,而直接进行全表扫描和连接操作可能会更快。在复杂的查询中,如果涉及到多个表的连接和多个条件,并且不同的条件可能需要使用不同的索引。例如,如果某个列的值只有极少数几种不同的值,而且查询条件经常涉及到这些值中的大部分,那么使用索引可能会导致大量的随机磁盘访问,从而降低查询性能。原创 2024-09-28 21:32:21 · 451 阅读 · 0 评论 -
MySQL 如何定位慢查询
这里将 slow_query_log 设置为 1 表示开启慢查询日志, slow_query_log_file 指定了慢查询日志的存储路径, long_query_time 设置了慢查询的时间阈值,这里设置为 1 秒,表示执行时间超过 1 秒的查询将被记录到慢查询日志中。通过开启慢查询日志、分析日志、使用 EXPLAIN 分析查询语句以及优化查询逻辑等方法,可以有效地定位和解决慢查询问题,提高数据库的性能和响应速度。这个工具可以统计慢查询日志中出现频率最高的查询语句、执行时间最长的查询语句等。原创 2024-09-23 03:58:22 · 912 阅读 · 0 评论 -
MyBatis 全面解析:从基础到高级
MyBatis 的二级缓存可能导致数据不一致,因为多个 SQLSession 可能同时修改数据库中的数据,而二级缓存中的数据可能没有及时更新。- 数据访问对象(DAO):用于执行数据库操作的接口,通过 MyBatis 的 SQLSession 来调用映射文件中的 SQL 语句。例如,在查询一个对象时,只加载对象的基本信息,当需要访问对象的关联对象时,再进行加载。- 解析 SQL 语句:当执行数据库操作时,MyBatis 会根据传入的参数解析 SQL 语句,生成最终的 SQL 语句。原创 2024-09-20 14:26:26 · 434 阅读 · 0 评论 -
数据库知识点汇总
常见的概念模型表示方法是实体-联系(E-R)图,其中实体用矩形框表示,属性用椭圆形表示,联系用菱形框表示,实体与实体之间的联系有一对一(1:1)、一对多(1:n)、多对多(m:n)等类型。用户身份鉴别用于验证用户的身份,存取控制用于限制用户对数据库对象的访问权限,审计用于记录用户对数据库的操作,视图可以提供一定的安全性,数据加密可以保护数据的机密性。它提供了数据定义、数据操作和数据控制等功能,包括创建、修改和删除数据库对象,对数据的插入、更新、删除和查询,以及用户权限管理、数据完整性和并发控制等。原创 2024-09-18 23:42:51 · 603 阅读 · 0 评论 -
MySQL 中的索引
总之,合理地使用索引可以大大提高 MySQL 数据库的查询性能,但需要注意索引的创建和使用场景,以避免不必要的开销。1. 频繁作为查询条件的列:如果某一列经常在查询中被用作条件,那么为该列创建索引可以显著提高查询性能。上创建索引后,关联查询的速度会明显加快。1. 加快数据检索速度:通过索引,可以快速定位到满足查询条件的数据,减少数据的扫描范围。3. 支持排序和分组操作:索引可以按照指定的列进行排序,从而加快排序和分组操作的速度。4. 数据量较大的表:对于数据量较大的表,创建合适的索引可以大大提高查询效率。原创 2024-09-07 23:39:35 · 840 阅读 · 0 评论 -
数据库的基础概念:关系、元组、属性、域、主键、外键
在这个例子中,学生表中的 “班级编号” 是外键,它引用了班级表中的 “班级编号”,建立了学生和班级之间的关联。例如,有两个表 A 和 B。如果表 B 中的一条记录的外键值在表 A 中找不到对应的主键值,那么这种情况通常是不被允许的,数据库系统可能会报错或采取其他约束措施。Python 中的元组是一种数据结构,用于存储一组相关的数据,而关系数据库中的元组是关系中的一行,用于表示一个具体的实体或记录。而在 Python 中,元组是一种有序的、不可变的序列,它可以包含多个元素,这些元素可以是不同的数据类型。原创 2024-09-07 22:20:46 · 811 阅读 · 0 评论