22.小波神经网络时间序列预测交通流量(附matlab程序)

1.简述

    学习目标:小波神经网络时间序列预测交通流量  

WNN(小波神经网络):是在误差反传神经网络拓扑结构的基础上发展而来的网络,与神经网络的结构具有一定的相似.在小波神经网络中,当整体信号向前传播时,误差却反向传播,但是与神经网络不同的是小波神经网络隐含层节点的传递函数为小波基函数.

         随着城市的快速发展,汽车保有量急剧增加,交通日益拥堵,传统的固定时长红绿灯系统不合理配时是造成这种情 况的主要原因。运用小波神经网络算法进行未来交通流预测研究,同时通过 MATLAB 软件平台结合微观仿真软件 VISSIM4.30 进 行虚拟仿真。实验结果表明:基于小波神经网络可用于预测短期交通流量,整体精度可达到 90%或更高,本算法与固定时长和 BP神经网络算法对比,能大幅度提高车辆通行量。伴随着经济的发展,城市的快速扩展和机动车保 有量急剧增加,城市交通拥堵问题日益严峻。其原因 除了道路容量有限外,传统固定时间交通灯的不合时 宜分配也增加了城市道路的拥堵,还造成不必要的机 动车能量浪费和汽车尾气排放增加。智能交通系统 (Intelligent Traffic System,简称 ITS)是缓解城市交通 拥堵,减少汽车尾气污染,提高出行效率的最有效方 法之一。ITS 的主要目标是实现城市的智能交通管 理和控制,而实时掌握交通信息的即时状态、预测发 展态势是实现城市交通智能化管理的前提。短时交通 流是短时交通的基本参数之一,是智能交通系统做出 交通决策的关键依据。短期流量预测是预测性和主动 式动态流量管理的基础。采用输入矢量的内积和小波 基进行加权以实现输入层的特征提取,利用小波基来作为模式识别的特征函数,结合神经网络的自适应功能和时频局域化的优点,优化网络参数和误差空间的 方式是采用小波基函数取代 Sigmoid 函数的小波神 经网络算法,经实验证明,其非线性拟合能力和收敛 速度均较为理想,可以对交通流量的短时进行预测。

BP(back propagation)神经网络是 1986 年由 Ru-melhart 和 Mcclelland 为首的科学家提出的概念,是一种前馈神经网络,由输入层、隐含层和输出层三个层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

素馨堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值