SHAP分析解释

1、越重要的越在上面,对最终预测结果影响越大的越在上面;

2、颜色表示该特征的原始特征值,红色表示大,蓝色表示小;

3、点(蜂巢图)或者柱子(条形图)的数值为正,说明对最终预测结果积极影响,数值为负,说明对最终预测结果消极影响;

### SHAP解释分析 Python 实现方法 #### 安装SHAP库 为了使用SHAP进行可解释分析,需先安装该库。可以通过pip或conda完成安装。 ```bash pip install shap ``` 或者, ```bash conda install -c conda-forge shap ``` #### 导入库与准备数据 在开始之前,导入必要的Python库,并加载用于训练的数据集。这里以阿里云天池的蒸汽数据集为例[^2]: ```python import pandas as pd import warnings warnings.filterwarnings("ignore") import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor import shap df_train = pd.read_csv(r"D:\zhengqi_train.txt", sep='\t') df_test = pd.read_csv(r"D:\zhengqi_test.txt", sep='\t') X = df_train.drop(columns=['target']) y = df_train['target'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) ``` #### 构建模型并计算Shapley值 构建随机森林回归器作为基础模型,并利用`shap.TreeExplainer()`获取各个样本对应的Shapley贡献度。 ```python model = RandomForestRegressor(n_estimators=100, max_depth=None, min_samples_leaf=1, n_jobs=-1) model.fit(X_train, y_train) explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X_val) ``` #### 解释全局重要性和局部影响 通过绘制汇总(Summary Plot),可以直观展示各特征的重要性及其对预测的影响方向;而依赖关系则有助于探索两个变量之间的交互作用[^3]。 ##### 绘制总结表 此显示了所有测试实例上每个输入特性的平均绝对SHAP值大小,从而反映了它们对于模型决策过程中的相对重要程度。 ```python plt.figure(figsize=(8, 6)) shap.summary_plot(shap_values, X_val, plot_type="bar") plt.show() ``` ##### 局部效应可视化 针对单一样本的具体情况,可通过力(Force Plot)展现其实际输出是由哪些因素共同决定的。 ```python # 对于第一个验证集条目创建force plot shap.initjs() shap.force_plot(explainer.expected_value, shap_values[0,:], X_val.iloc[0,:]) ``` ##### 特征间相互作用绘 当关注特定两维间的关联模式时,采用依存关系能够清晰呈现二者之间可能存在的非线性联系以及条件分布特性。 ```python shap.dependence_plot('V27', shap_values, X_val, interaction_index='V11') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

那个_少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值