没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 灰狼优化算法(GWO)

2. 人工神经网络(BPNN)

3. AdaBoost集成学习

GWO-BP-AdaBoost集成模型

研究应用与挑战

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文献


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

参考文献:

GWO-BP-AdaBoost预测研究是指将灰狼优化(Grey Wolf Optimizer, GWO)、人工神经网络(Back Propagation Neural Network, BPNN)与AdaBoost集成学习算法结合起来的一种预测模型应用研究。这种综合方法利用了各算法的优点,旨在提高预测精度和泛化能力。下面是对这一复合技术框架的详细介绍:

1. 灰狼优化算法(GWO)

GWO是一种受到灰狼捕食行为启发的全球优化算法。它模拟了灰狼在自然界中狩猎时所展示的领导层次、追击和智能协作等特性,通过不断更新搜索空间中的“狼群”(即候选解集合),来寻找问题的最优解。在预测模型参数优化中,GWO可用于自动调整BP神经网络的权重和偏置,以获得更优的网络结构。

2. 人工神经网络(BPNN)

BP神经网络是一种多层前馈神经网络,以其反向传播算法著称,能够学习并处理非线性关系。在预测任务中,BPNN能够通过输入层接收数据,经过隐藏层进行复杂的模式识别和特征提取,最后由输出层给出预测结果。然而,BPNN的性能很大程度上依赖于其初始参数设置,因此需要通过优化算法进行调优。

3. AdaBoost集成学习

AdaBoost(Adaptive Boosting)是一种集成学习方法,通过构建多个弱分类器(在这个上下文中可以理解为简单的预测模型),并将它们组合成一个强分类器。每一轮训练中,AdaBoost会重点考虑上一轮预测错误的样本,给予其更高的权重,以此逐渐提升整个集成的预测能力。在回归预测中,类似的思想也可被应用于提升预测的准确性。

GWO-BP-AdaBoost集成模型

结合这三个算法的预测模型通常工作流程如下:

  1. 初始化:使用GWO算法优化BP神经网络的初始权重和偏置参数,获得一个初始性能较好的BP神经网络模型。
  2. 集成学习:应用AdaBoost策略,生成多个经GWO优化的不同BP神经网络模型(弱学习器),每个模型可能关注于数据集的不同部分或不同类型的特征。
  3. 预测与融合:对于新的输入数据,所有弱学习器分别给出预测结果,AdaBoost根据各个模型的历史表现赋予不同的权重,进行加权融合,从而得出最终预测结果。

研究应用与挑战

该集成模型因其强大的非线性拟合能力和优化搜索能力,广泛应用于经济预测、能源消耗预测、疾病诊断、天气预报等领域。然而,实现过程中也面临一些挑战:

  • 参数调整:如何合理设定GWO的参数以避免过早收敛或搜索效率低下。
  • 模型复杂度:集成学习增加了模型的复杂度,可能导致过拟合,需要有效的正则化策略。
  • 计算资源:由于涉及到多次迭代和多个模型的训练,对计算资源的需求较高。

综上所述,GWO-BP-AdaBoost预测研究通过集成优化、神经网络和集成学习的先进技术,为复杂预测问题提供了有力的工具,但同时也要求研究人员细致考虑模型的设计与优化策略。

注意:此预测方法可以用到电力系统负荷预测、光伏预测等领域,目前没有发表论文,超级值得考虑。

📚2 运行结果

部分代码:

%% BPNN-Adaboost算法预测
disp(' ')
disp('BPNN-Adaboost预测:')
K = 5; % 弱分类器个数
[at,ada_test_sim,ada_train_sim] = bp_adaboost(inputn,outputn,K,hiddennum,inputn_test);
an1 = at*ada_test_sim; % 测试集预测

%预测结果反归一化与误差计算
BP_Ada_test_sim=mapminmax('reverse',an1,outputps); %把仿真得到的数据还原为原始的数量级

ms_bp_ada   = abs(BP_Ada_test_sim-output_test)./output_test;
mae_bp_ada  = mean(abs(output_test - BP_Ada_test_sim));
rmse_bp_ada = sqrt(mean((output_test - BP_Ada_test_sim).^2));
mape_bp_ada = mean(abs((output_test - BP_Ada_test_sim)./BP_Ada_test_sim));
r2_bp_ada   = 1 - (sum((BP_Ada_test_sim- output_test).^2) / sum((output_test - mean(output_test)).^2));

%% GWO-BPNN-Adaboost算法预测
disp(' ')
disp('GWO-BPNN-Adaboost预测:')
% 算法参数
inputnum=size(inputn,1);
outputnum=size(outputn,1);
%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
lb=-1; % 下界
ub=1;  % 上界
dim=numsum;
popsize = 10;    % 种群数
iter_max = 50;   % 迭代次数
lb= lb.*ones( 1,dim );
ub= ub.*ones( 1,dim );
% GWO-BPNN-Adaboost
[at1,gwo_ada_test_sim,BPoutput1,IterCurve1] = gwo_bp_adaboost(inputn,outputn,K,hiddennum,inputn_test,lb,ub,dim,popsize,iter_max);

an1 = at1*gwo_ada_test_sim; % 测试集预测
%预测结果反归一化与误差计算
GWO_BP_Ada_test_sim=mapminmax('reverse',an1,outputps); %把仿真得到的数据还原为原始的数量级

ms_gwo_bp_ada   = abs(GWO_BP_Ada_test_sim-output_test)./output_test;
mae_gwo_bp_ada  = mean(abs(output_test - GWO_BP_Ada_test_sim));
rmse_gwo_bp_ada = sqrt(mean((output_test - GWO_BP_Ada_test_sim).^2));
mape_gwo_bp_ada = mean(abs((output_test - GWO_BP_Ada_test_sim)./GWO_BP_Ada_test_sim));
r2_gwo_bp_ada   = 1 - (sum((GWO_BP_Ada_test_sim- output_test).^2) / sum((output_test - mean(output_test)).^2));

Mean_IterCurve1 = mean(IterCurve1); % 平均迭代曲线

%% 结果展示
% 进化迭代曲线
figure
plot(1:size(Mean_IterCurve1,2),Mean_IterCurve1,'Color',[239 65 67]/255,'LineWidth',3);hold on
legend('GWO-BPNN');
xlabel('进化代数');
ylabel('适应度');
title('进化收敛图');

% 预测结果与实际值
figure
plot(output_test(1,:),'-^','Color',[144 201 231]/255,'LineWidth',2);
hold on
plot(BPtest_sim(1,:),'-o','Color',[33 158 188]/255,'LineWidth',2);
plot(BP_Ada_test_sim(1,:),'-s','Color',[019 103 131]/255,'LineWidth',2);
plot(GWO_BP_Ada_test_sim(1,:),'-d','Color',[254 183 5]/255,'LineWidth',2);
legend('Real Value','BPNN','BPNN-Adaboost','GWO-BPNN-Adaboost')
xlabel('测试样本编号')
ylabel('输出')
title('预测结果显示(测试集)')
grid on;

% 预测相对误差
figure
plot(ms_bp(1,:),'-o','Color',[33 158 188]/255,'LineWidth',2);hold on
plot(ms_bp_ada(1,:),'-s','Color',[019 103 131]/255,'LineWidth',2);
plot(ms_gwo_bp_ada(1,:),'-d','Color',[254 183 5]/255,'LineWidth',2);
legend('BPNN','BPNN-Adaboost','GWO-BPNN-Adaboost')
xlabel('测试样本编号','FontSize',12);
ylabel('相对误差','FontSize',12);
title('测试集的相对误差')
grid on

figure
% 误差统计
AA = [mae_bp,mae_bp_ada,mae_gwo_bp_ada;...
    rmse_bp,rmse_bp_ada,rmse_gwo_bp_ada;...
    mape_bp,mape_bp_ada,mape_gwo_bp_ada;...
    r2_bp,r2_bp_ada,r2_gwo_bp_ada];
B= bar(AA);
xticklabels({' MAE',  'RMSE' ,'MAPE','R^2'})
legend('BPNN','BPNN-Adaboost','GWO-BPNN-Adaboost')
B(1).FaceColor = [33 158 188]/255;
B(2).FaceColor = [019 103 131]/255;
B(3).FaceColor = [254 183 5]/255;
% B(4).FaceColor = [217 079 051]/255;
title('预测算法评价指标对比')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 9
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经验模态分解 (Empirical Mode Decomposition, EMD) 是一种信号处理中常用的非线性时频分析方法,灰狼算法 (Grey Wolf Optimizer, GWO) 是一种基于自然灰狼社会行为模拟的优化算法,支持向量机 (Support Vector Machine, SVM) 是一种常用的机器学习算法。 下面是基于EMD-GWO-SVR的时间序列预测MATLAB代码示例: ```matlab % 导入数据 data = importdata('data.txt'); time_series = data(:,1); % 原始时间序列数据 % EMD分解 imf = emd(time_series); % 对时间序列进行EMD分解,得到各个IMF成分 % 数据准备 % 将IMF成分与原始时间序列数据合并,作为输入特征 X = [imf, time_series]; % 提取下一时刻的真实数据作为输出标签 Y = time_series(2:end); % 划分训练集和测试集 split_ratio = 0.8; % 训练集和测试集的划分比例 split_index = round(size(X,1) * split_ratio); X_train = X(1:split_index,:); X_test = X(split_index+1:end,:); Y_train = Y(1:split_index,:); Y_test = Y(split_index+1:end,:); % 灰狼算法优化的支持向量机模型训练 model = svmtrain(X_train,Y_train); % 使用支持向量机训练模型 % 模型预测 Y_pred = svmpredict(X_test,model); % 使用训练好的模型对测试集进行预测 % 结果评估 mse = mean((Y_test - Y_pred).^2); % 计算均方误差 % 可视化结果 figure; plot(time_series, 'b'); hold on; plot(split_index+1:length(time_series), Y_pred, 'r'); hold off; legend('真实数据', '预测数据'); title(['EMD-GWO-SVR预测结果,均方误差:', num2str(mse)]); xlabel('时间'); ylabel('数据值'); ``` 上述代码对于给定的时间序列数据进行EMD分解,将分解得到的IMF成分与原始时间序列数据合并作为输入特征。然后使用GWO算法对输入特征进行优化,得到最优的支持向量机模型。最后使用训练好的模型对测试集进行预测,并计算均方误差。最后将预测结果与真实数据进行可视化展示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值