【GWO-BP-AdaBoost】基于灰狼优化的优化与AdaBoost集成增强BP神经网络预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【GWO-BP-AdaBoost】这一表述融合了三种先进的计算技术:灰狼优化(Grey Wolf Optimizer, GWO)、BP神经网络(Backpropagation Neural Network, BPNN)以及AdaBoost集成方法,旨在构建一个高性能的预测模型。下面是对这个组合方法的详细解析:

  1. 灰狼优化算法 (GWO):这是一种受自然界灰狼捕食行为启发的群体智能优化算法。GWO通过模拟狼群中阿尔法、贝塔和欧米伽等角色的协作与竞争策略,寻找问题的最优解。在优化过程中,算法通过不断更新搜索空间中的代理点(代表潜在解)来逼近全局最优解,适用于解决函数优化、模式识别、机器学习等领域的问题。

  2. BP神经网络 (BPNN):这是一种典型的多层前馈型人工神经网络,以其强大的非线性映射能力和反向传播误差修正机制而闻名。BP神经网络能够学习并处理复杂的数据关系,常用于分类和回归预测任务。然而,其性能严重依赖于初始权重和阈值的设置,以及训练过程中的参数调整。

  3. AdaBoost集成方法:AdaBoost(Adaptive Boosting)是一种机器学习的集成方法,通过结合多个弱分类器(在此上下文中可以是BP神经网络)来构建一个强分类器。每个弱分类器在训练过程中被赋予不同的权重,根据其在前一轮迭代中的错误率进行调整。错误率高的分类器在下一轮将获得更多的关注,以逐步改进整个集成系统的性能。

将这三者结合起来的【GWO-BP-AdaBoost】框架,工作流程大致如下:

  • 初始化与优化:首先,使用GWO算法优化BP神经网络的初始权重和阈值,以期快速找到一个较好的初始解,避免BP神经网络陷入局部最优解。

  • 集成学习:然后,基于优化后的BP神经网络模型,应用AdaBoost算法集成多个这样的BP神经网络。通过多轮迭代,根据各个BP神经网络在训练数据上的表现动态调整它们的权重,形成一个更加鲁棒和精确的预测模型。

这种结合方式的优势在于:

  • 提高预测精度:通过AdaBoost集成多个经过GWO优化的BP神经网络,可以有效减少单个模型的过拟合风险,提升整体预测性能。
  • 增强泛化能力:GWO优化有助于BP神经网络更好地探索解空间,找到更优的参数配置;AdaBoost则通过强调那些在前几轮预测中表现不佳的实例,提升了模型对复杂或边缘案例的处理能力。
  • 适应性强:此框架对于不同类型的数据集和预测问题具有较强的适应性,尤其是处理高维、非线性数据时表现突出。

总之,【GWO-BP-AdaBoost】研究提供了一种新的集成学习方法,旨在利用群体智能优化和集成学习的互补优势,推动预测模型的性能边界。该方法有望在金融预测、疾病诊断、能源消耗预测等多个领域展现其潜力。

📚2 运行结果

部分代码:

function [at test_sim BPoutput IterCurve] = gwo_bp_adaboost(inputn,outputn,K,hiddennum,inputn_test,lb,ub,dim,popsize,iter_max);

inputnum=size(inputn,1);
outputnum=size(outputn,1);
% 迭代曲线
IterCurve = zeros(K,iter_max);

%% 权重初始化
%样本权重
[~,nn]=size(inputn);
D(1,:)=ones(1,nn)/nn;

%% 弱预测器
for i=1:K
    disp(strcat('GWO-BPNN-Adaboost预测:(第',num2str(i),'个弱分类器训练中)'))
    %弱预测器训练
    net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm');
    %网络参数配置
    net.trainParam.epochs=500;         % 训练次数,这里设置为500次
    net.trainParam.lr=0.1;                   % 学习速率,这里设置为0.01
    net.trainParam.goal=0.00001;                    % 训练目标最小误差,这里设置为0.0001
    net.trainParam.show=25;                % 显示频率,这里设置为每训练25次显示一次
    net.trainParam.mc=0.01;                 % 动量因子
    net.trainParam.min_grad=1e-6;       % 最小性能梯度
    net.trainParam.max_fail=6;               % 最高失败次数
    % 隐藏训练界面--显示会很慢
    net.trainParam.showWindow = false;
    net.trainParam.showCommandLine = false;
    % 灰狼算法优化BPNN
    [IterC Best_Pos] = gwo_bp(dim,iter_max,ub,lb,popsize,net,inputnum,hiddennum,outputnum,inputn,outputn);
    IterCurve(i,:) = IterC;
    x = Best_Pos;
    % %用遗传算法优化的BP网络进行值预测
    w1=x(1:inputnum*hiddennum);
    B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
    w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
    B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
    
    net.iw{1,1}=reshape(w1,hiddennum,inputnum);
    net.lw{2,1}=reshape(w2,outputnum,hiddennum);
    net.b{1}=reshape(B1,hiddennum,1);
    net.b{2}=B2;
    
    %训练
    net=train(net,inputn,outputn);
    %弱预测器预测
    BPoutput(i,:)=sim(net,inputn);  
    %预测误差
    erroryc(i,:)=outputn-BPoutput(i,:);
    %测试数据预测
    test_sim(i,:)=sim(net,inputn_test);
  
    %调整D值
    Error(i)=0;
    for j=1:nn
        if abs(erroryc(i,j))>0.001  %较大误差
            Error(i)=Error(i)+D(i,j);
            D(i+1,j)=D(i,j)*1.1;
        else
            D(i+1,j)=D(i,j);
        end
    end
    
    % 若错误率过小 则跳出
    if Error(i)<eps
        break;
    end
    
    %计算弱预测器权重
    at(i)=0.5/exp(abs(Error(i)));
    
    %D值归一化
    D(i+1,:)=D(i+1,:)/sum(D(i+1,:));
end

%% 强预测器预测
at=at/sum(at);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 32
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经验模态分解 (Empirical Mode Decomposition, EMD) 是一种信号处理中常用的非线性时频分析方法,灰狼算法 (Grey Wolf Optimizer, GWO) 是一种基于自然灰狼社会行为模拟的优化算法,支持向量机 (Support Vector Machine, SVM) 是一种常用的机器学习算法。 下面是基于EMD-GWO-SVR的时间序列预测MATLAB代码示例: ```matlab % 导入数据 data = importdata('data.txt'); time_series = data(:,1); % 原始时间序列数据 % EMD分解 imf = emd(time_series); % 对时间序列进行EMD分解,得到各个IMF成分 % 数据准备 % 将IMF成分与原始时间序列数据合并,作为输入特征 X = [imf, time_series]; % 提取下一时刻的真实数据作为输出标签 Y = time_series(2:end); % 划分训练集和测试集 split_ratio = 0.8; % 训练集和测试集的划分比例 split_index = round(size(X,1) * split_ratio); X_train = X(1:split_index,:); X_test = X(split_index+1:end,:); Y_train = Y(1:split_index,:); Y_test = Y(split_index+1:end,:); % 灰狼算法优化的支持向量机模型训练 model = svmtrain(X_train,Y_train); % 使用支持向量机训练模型 % 模型预测 Y_pred = svmpredict(X_test,model); % 使用训练好的模型对测试集进行预测 % 结果评估 mse = mean((Y_test - Y_pred).^2); % 计算均方误差 % 可视化结果 figure; plot(time_series, 'b'); hold on; plot(split_index+1:length(time_series), Y_pred, 'r'); hold off; legend('真实数据', '预测数据'); title(['EMD-GWO-SVR预测结果,均方误差:', num2str(mse)]); xlabel('时间'); ylabel('数据值'); ``` 上述代码对于给定的时间序列数据进行EMD分解,将分解得到的IMF成分与原始时间序列数据合并作为输入特征。然后使用GWO算法对输入特征进行优化,得到最优的支持向量机模型。最后使用训练好的模型对测试集进行预测,并计算均方误差。最后将预测结果与真实数据进行可视化展示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值