【负荷预测】基于VMD-CNN-BiGRU的负荷预测研究(Python代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、VMD-CNN-BiGRU模型概述

三、研究优势与挑战

优势:

挑战:

四、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于VMD-CNN-BiGRU的负荷预测研究是一个结合了多种先进技术的复杂领域,旨在提高负荷预测的准确性和鲁棒性。以下是对该研究的详细分析:

一、研究背景与意义

负荷预测是电力系统运行和规划中的重要环节,对于保障电网安全、经济、高效运行具有重要意义。然而,负荷数据往往受到多种因素的影响,如天气、节假日、经济活动等,使得负荷预测具有高度的复杂性和不确定性。因此,研究基于VMD-CNN-BiGRU的负荷预测方法,旨在通过先进的信号处理技术、深度学习技术和时间序列分析方法,提高负荷预测的精度和可靠性。

二、VMD-CNN-BiGRU模型概述

VMD-CNN-BiGRU模型是一种结合了变分模态分解(VMD)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的混合预测模型。该模型通过以下步骤实现负荷预测:

  1. VMD分解:首先,利用VMD技术对负荷数据进行分解,将其分解为多个固有模式函数(IMF)。VMD是一种非递归的模态分解方法,能够自适应地将复杂信号分解为有限数量的IMF分量,每个分量都包含原始信号中不同频率的信息。通过VMD分解,可以更好地捕捉负荷数据中的内在规律和特征。

  2. CNN特征提取:对于每个IMF分量,使用CNN进行特征提取。CNN是一种擅长处理图像和序列数据的神经网络,通过卷积层和池化层等结构,可以有效地提取输入数据中的局部特征和空间信息。在负荷预测中,CNN能够捕捉负荷数据中的短期波动和周期性变化。

  3. BiGRU序列建模:将CNN提取的特征序列输入到BiGRU中进行序列建模。BiGRU是一种具有双向记忆和门控机制的循环神经网络,能够同时捕捉序列数据中的前向和后向依赖关系。通过BiGRU,模型可以更好地理解负荷数据中的长期趋势和动态变化。

  4. 预测与集成:最后,使用训练好的BiGRU模型对每个IMF分量的特征序列进行预测,并将所有IMF分量的预测结果相加得到最终的负荷预测值。这种集成预测方法能够充分利用VMD分解和CNN特征提取的优势,提高负荷预测的准确性和稳定性。

三、研究优势与挑战

优势:
  1. 高精度:VMD-CNN-BiGRU模型结合了多种先进技术的优势,能够更准确地捕捉负荷数据中的复杂特征和动态变化。
  2. 强鲁棒性:该模型对噪声和异常值具有一定的抗干扰能力,能够在复杂多变的负荷环境中保持稳定的预测性能。
  3. 灵活性:模型中的各个组件可以根据具体需求进行调整和优化,以适应不同的负荷预测场景和数据特点。
挑战:
  1. 计算复杂度:VMD-CNN-BiGRU模型涉及多个复杂的计算步骤和大量的参数优化过程,对计算资源的要求较高。
  2. 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失、异常或噪声等问题,可能会影响模型的预测精度。
  3. 模型解释性:深度学习模型通常具有较高的黑箱性质,难以直接解释其内部的工作机制和决策过程。这在一定程度上限制了模型在可解释性要求较高的场景中的应用。

四、结论与展望

基于VMD-CNN-BiGRU的负荷预测研究为电力系统负荷预测提供了一种新的思路和方法。该模型通过结合VMD分解、CNN特征提取和BiGRU序列建模等多种技术手段,实现了对负荷数据的高效处理和准确预测。未来,随着技术的不断发展和完善,该模型有望在电力系统运行和规划中发挥更加重要的作用。同时,也需要进一步研究和解决模型计算复杂度、数据依赖性和解释性等方面的挑战和问题。

📚2 运行结果

部分代码:

def evaluate_forecasts(Ytest, predicted_data, n_out):
    # 定义一个函数来评估预测的性能。
    mse_dic = []
    rmse_dic = []
    mae_dic = []
    mape_dic = []
    r2_dic = []
    # 初始化存储各个评估指标的字典。
    table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
    for i in range(n_out):
        # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
        actual = [float(row[i]) for row in Ytest]  #一列列提取
        # 从测试集中提取实际值。
        predicted = [float(row[i]) for row in predicted_data]
        # 从预测结果中提取预测值。
        mse = mean_squared_error(actual, predicted)
        # 计算均方误差(MSE)。
        mse_dic.append(mse)
        rmse = sqrt(mean_squared_error(actual, predicted))
        # 计算均方根误差(RMSE)。
        rmse_dic.append(rmse)
        mae = mean_absolute_error(actual, predicted)
        # 计算平均绝对误差(MAE)。
        mae_dic.append(mae)
        MApe = mape(actual, predicted)
        # 计算平均绝对百分比误差(MAPE)。
        mape_dic.append(MApe)
        r2 = r2_score(actual, predicted)
        # 计算R平方值(R2)。
        r2_dic.append(r2)
        if n_out == 1:
            strr = '预测结果指标:'
        else:
            strr = '第'+ str(i + 1)+'步预测结果指标:'
        table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张鲁一航,杨彦明,陈永展,等.基于VMD-CNN-BiLSTM的变工况涡扇发动机剩余寿命预测[J].北京航空航天大学学报, 2024.DOI:10.13700/j.bh.1001-5965.2021.0051.

[2]赵征,周孜钰,南宏钢.基于VMD的CNN-BiLSTM超短期风电功率多步区间预测[J].华北电力大学学报, 2022(004):049.

[3]杨进昆,党建武,杨景玉,等.基于时序分析及CNN-BiLSTM-AM的阶跃型滑坡位移预测[J].国外电子测量技术, 2024, 43(1):126-134.

[4]邵星,曹洪宇,王翠香,等.一种基于注意力机制的VMD-CNN-LSTM短期风电功率预测方法[J].[2024-09-09].DOI:10.12677/ORF.2024.141067.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 19
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值