【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

分布式能源选址与定容、光伏及储能协同优化配置研究

一、分布式能源选址与定容的基础方法论

二、光伏系统优化配置关键技术

三、储能系统优化配置策略

四、光伏-储能-配电网协同优化方法

五、技术挑战与未来方向

六、典型应用案例(IEEE 33节点系统)

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章下载


💥1 概述

分布式能源选址与定容、光伏及储能协同优化配置研究

 由于能源的日益匮乏,电力需求的不断增长等,配电网中分布式能源渗透率不断提高,且逐渐向主动配电网方向发展。此外,需求响应(demand response,DR)的加入对配电网的规划运行也带来了新的因素[1-2]。因此,如何综合考虑分布式发电 (distributed generation,DG)和负荷,甚至需求响应负荷的关系,从而制定有效的协同规划方案,来应对高渗透分布式电源接入给主动配电网带来的诸多问题,具有较大的意义和价值。国内外学者对传统配电网规划方案作了大量的研究工作,如 DG 规划[3-4]、网架规划[5-6]、无功补偿规划[7]等。文献[3-7]均为单一规划,然而在分布式能源大力提倡和发展环境下,配电网公司应综合考虑 DG 和用户响应等关联因素,制定协同规划方案。当前配电网协同规划领域研究主要集中在变 电站和线路协同规划[8]及变电站、线路和电容的协同规划[9]等,其设计目标主要集中于减少传统配电网规划的设备投资,进而满足负荷的长。

随着分布式电源(distributed generation,DG)的渗透率不断增长,其出力的不确定性限制了配电网的消纳能力[1] 。安装储能设备等传统的解决措施又受到规划成本、设备灵活性等诸多方面的制约。柔性负荷具有成本低、灵活度高的特点,可代替储能设备实现一定的辅助功能,其与实际储能被统称为广义储能系统[2⁃3] ,是现代配电网规划中的重要部分。

粒子群优化算法(particle swarm optimization,PSO)是一种利用微粒模拟飞鸟捕食行为,不断更新粒子位置和速度,寻找目标最优解的优化算法。该算法因收敛速度快,搜索能力强的特点而受到广泛应用。本文采用惯性权重因子和学习因子调整的改进粒子群算法,进一步优化粒子搜索能力,提高运算收敛性。改进粒子群算法求解双层优化模型步骤如下:

1)输入配电网络参数,采用 K-均值多场景分析法对风光荷年历史数据进行处理,将风光荷随机特性用不同季节不同气候下多个典型日确定化描述,得到各典型日场景数据和概率;

2)初始化粒子位置和速度,即规划层灵活性资源的位置和容量,作为运行层的输入;

然后上下两层规划如下:

一、分布式能源选址与定容的基础方法论
  1. 资源评估与多维度约束分析
    选址定容需基于资源禀赋、负荷特性及电网条件的三重评估体系:

    • 资源评估:需量化分析太阳能辐照度(光伏)、风速(风电)等可再生能源时空分布特征。例如,光伏需结合组件低辐照性能、高温衰减特性进行区域适配性建模。
    • 负荷特性分析:需解析峰谷差、负荷波动率等指标,并建立时序匹配模型。
    • 电网条件约束:包括节点电压偏差限值(≤±10%)、谐波畸变率(THDi≤5%)及渗透率限制(总容量≤上级变压器容量的25%-30%)。
  2. 多目标优化算法体系

    • 经典算法对比
  • 粒子群算法(PSO) :擅长处理非线性问题,可通过动态密集距离排序更新非劣解集。
  • 遗传算法(GA) :在离散变量编码(如储能位置选择)中表现优异。
  • 混合算法:如拉格朗日-遗传算法结合解析法与启发式搜索,适用于多DG协同配置。
    • 前沿改进方向:引入非支配排序(NSGA-III)提升Pareto解集分布均匀性,采用偏移交叉操作增强位置变量收敛性。
二、光伏系统优化配置关键技术
  1. 组件-逆变器协同设计
    • 容配比优化:需平衡LCOE(平准化度电成本)与逆变器寿命。例如,常州地区最佳容配比为1.44,需考虑土地类型(屋顶/地面)对散热的影响。
    • 阵列布局优化
  • 倾角/方位角:基于地理坐标采用太阳轨迹跟踪算法,固定倾角误差需控制在±5°以内。
  • 间距设计:采用遮阴分析模型,确保冬至日9:00-15:00无遮挡。
  1. 双层优化模型应用
    • 外层模型:以装机容量、位置为变量,目标函数包含投资回收期(<8年)与碳排放强度。
    • 内层模型:基于实时辐照度预测优化出力曲线,结合MATPOWER潮流计算验证节点电压稳定性。
三、储能系统优化配置策略
  1. 容量规划的多目标权衡
    • 经济性指标:全生命周期成本(LCC)需涵盖初始投资(≈1.5元/Wh)、运维成本(≈5%初始投资/年)及残值。
    • 技术性指标:包括循环效率(>90%)、响应时间(<100ms)及荷电状态(SOC)安全区间(20%-90%)。
    • 典型配置模型
  • 电氢耦合储能:通过电解槽-燃料电池循环实现跨季节储能,适用于风光渗透率>150%场景。
  • 混合整数规划:考虑电池衰减(年容量衰减率≤3%)与需量管理收益,采用大M法线性化处理非线性约束。
  1. 运行策略优化
    • 分时电价响应:在峰谷价差>0.7元/kWh时优先参与套利。
    • 多时间尺度调度:结合超短期功率预测(5分钟分辨率)实现AGC调频,降低考核罚款。
四、光伏-储能-配电网协同优化方法
  1. 双层优化框架设计

    • 外层(规划层) :采用NSGA-III算法同步优化光伏/储能位置与容量,目标函数包含网损率(<5%)、电压偏差(<5%)及投资回报率。
    • 内层(运行层) :基于改进灰狼算法(GWO)制定24小时充放电计划,嵌入CVaR模型量化弃光风险。
  2. 集群划分与多能互补

    • 模块度聚类:根据电气距离划分储能集群,减少跨区功率交互波动。
    • 光储热协同:通过氢能枢纽回收电解废热,提升综合能效至75%以上。
五、技术挑战与未来方向
  1. 现存问题

    • 经济性瓶颈:储能系统投资回收期普遍>10年,需政策补贴支撑。
    • 协同调度复杂度:多时间尺度控制变量维度爆炸问题尚未完全解决。
  2. 创新路径

    • 数字孪生技术:构建配电网-分布式能源联合仿真平台,实现秒级实时优化。
    • 共享储能模式:通过主从博弈优化社区间储能租赁价格,降低单体配置成本。
六、典型应用案例(IEEE 33节点系统)
配置方案网损降低率电压波动抑制率LCOE(元/kWh)
独立光伏12%18%0.42
光储双层优化27%43%0.38
集群协同优化35%52%0.35
结论

光伏-储能双层优化需贯穿"资源评估→多目标规划→动态调度"全链条,未来应聚焦于:1)长寿命低衰减储能技术;2)基于区块链的分布式交易机制;3)高精度源-荷-储联合预测模型。通过算法创新与政策引导,推动配电网从"被动消纳"向"主动调控"转型。

📚2 运行结果

 

 

 🍞正在为您运送作品详情

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]高红均,刘俊勇.考虑不同类型DG和负荷建模的主动配电网协同规划[J].中国电机工程学报,2016,36(18):4911-4922+5115.DOI:10.13334/j.0258-8013.pcsee.152440.

[2]刘自发,于普洋,李颉雨.计及运行特性的配电网分布式电源与广义储能规划[J].电力自动化设备,2023,43(03):72-79.DOI:10.16081/j.epae.202208029.

[3]任智君,郭红霞,杨苹等.含高比例可再生能源配电网灵活资源双层优化配置[J].太阳能学报,2021,42(09):33-38.DOI:10.19912/j.0254-0096.tynxb.2019-0783.

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值