基于YOLOV8的无人商店的商品识别与计价系统

摘    要

 随着图像识别技术的迅速发展,全球零售行业正在逐步实现自动化和智能化。线下商店的商品自动结算需求日益增加,传统的人工结算方式难以满足零售行业发展的需要,这促使了自助收银机、智能售货柜等创新方案的兴起。

本论文基于该现状,设计并实现一个基于YOLOv8的商品识别与计价系统,该系统以无人商店常见的113种零售商品为基础,模拟了智能售货柜和自助收银机两种零售模式,实现了商品实时精确识别与自动计价功能。在系统设计过程中,首先训练了一个基于YOLOv8的商品识别模型,并在公开数据集上进行验证,平均识别精度(mAP50)高达97.5%。然后基于PyQt5 GUI、SQLite数据库、OpenCV等基础库,开发了一个高效简洁、用户用好的交互系统。系统分为用户端和管理员端,用户端可以进行商品的自动识别与计价、账单查询和个人信息维护,管理员端可以进行商品管理、用户管理、订单可视化分析等。

该系统能够在图片、实时视频流中准确识别出商品并给出相应的价格信息,可以广泛应用于商店、超市等零售环境,不仅能为商家提供一个自动化、高效和精确的商品结算方案,还能降低门店运营成本和优化消费者的购物体验。

关键词:  商品识别;YOLOv8;目标检测;智能零售;无人商店

研究背景与意义

近年来,随着人工智能图像识别技术的迅速发展,全球零售行业正在逐步实现自动化和智能化。无人商店全自动售货成为时下零售行业的热点,其核心在于通过技术手段减少或消除对人工的依赖。无人商店自动售货不仅能降低人力资源成本,还能节省消费者排队等待时间,从而显著提升消费者的消费体验。而无人商店售货中最重要的环节是商品的自动识别与计价,它确保了交易的准确性和效率。

无人售货最早的表现形式是自动贩卖机,它通过精密的机械传动结构,实现了消费者与平台的物理交流。在这种模式下,用户购买多件商品,需要多次付款,且存在商品无法掉落的问题。这种贩卖机虽然在早期市场占据了一席之地,但其制造成本相对较高,空间利用效率低,且商品容量较为受限,在市场上发展势头高开低走。取而代之的是现下的智能售货柜、自助收银机。智能售货柜能自动识别用户取走了哪些商品,并完成自动计价。自助收银机能对放在平台上的商品进行自动识别计价。自助收银机、智能售货柜有效降低了人力、物力成本。突破了商品种类受限的约束,提供了更为丰富的产品选择。这两种无人零售模式允许商家轻松扩展业务,不受地理位置的限制。无论是在繁忙的商业区还是在偏僻的区域,都可以根据需求灵活部署这些设备。这两种模式主要有三种类型:称重识别、无线射频、基于计算机视觉的商品识别。其中,基于计算机视觉的商品识别,能够精确识别各种复杂场景下的商品,有效解决光照、拍摄角度、拍摄距离等不同环境条件对采集的图像的影响,有效应对商品摆放拥挤和相互遮挡等情况,实现自动化、高准确率的商品识别。、

YOLOV8结构图

数据集

收集第六届“信也科技杯”图像算法大赛提供的公开数据集,并进行有效性检验,去除重复无效的图片。该数据集是VOC格式(使用 XML 文件标注标签信息),而支持 YOLOv8训练的label格式为 YOLO 格式(图片标签文件格式为 TXT)。因此需要label转化为 TXT 格式。同时为了更好的训练模型与验证模型

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学大数据技术人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值