随着图像识别技术的迅速发展,全球零售行业正在逐步实现自动化和智能化。线下商店的商品自动结算需求日益增加,传统的人工结算方式难以满足零售行业发展的需要,这促使了自助收银机、智能售货柜等创新方案的兴起。
本论文基于该现状,设计并实现一个基于YOLOv8的商品识别与计价系统,该系统以无人商店常见的113种零售商品为基础,模拟了智能售货柜和自助收银机两种零售模式,实现了商品实时精确识别与自动计价功能。在系统设计过程中,首先训练了一个基于YOLOv8的商品识别模型,并在公开数据集上进行验证,平均识别精度(mAP50)高达97.5%。然后基于PyQt5 GUI、SQLite数据库、OpenCV等基础库,开发了一个高效简洁、用户用好的交互系统。系统分为用户端和管理员端,用户端可以进行商品的自动识别与计价、账单查询和个人信息维护,管理员端可以进行商品管理、用户管理、订单可视化分析等。
该系统能够在图片、实时视频流中准确识别出商品并给出相应的价格信息,可以广泛应用于商店、超市等零售环境,不仅能为商家提供一个自动化、高效和精确的商品结算方案,还能降低门店运营成本和优化消费者的购物体验。
关键词: 商品识别;YOLOv8;目标检测;智能零售;无人商店
研究背景与意义
近年来,随着人工智能图像识别技术的迅速发展,全球零售行业正在逐步实现自动化和智能化。无人商店全自动售货成为时下零售行业的热点,其核心在于通过技术手段减少或消除对人工的依赖。无人商店自动售货不仅能降低人力资源成本,还能节省消费者排队等待时间,从而显著提升消费者的消费体验。而无人商店售货中最重要的环节是商品的自动识别与计价,它确保了交易的准确性和效率。
无人售货最早的表现形式是自动贩卖机,它通过精密的机械传动结构,实现了消费者与平台的物理交流。在这种模式下,用户购买多件商品,需要多次付款,且存在商品无法掉落的问题。这种贩卖机虽然在早期市场占据了一席之地,但其制造成本相对较高,空间利用效率低,且商品容量较为受限,在市场上发展势头高开低走。取而代之的是现下的智能售货柜、自助收银机。智能售货柜能自动识别用户取走了哪些商品,并完成自动计价。自助收银机能对放在平台上的商品进行自动识别计价。自助收银机、智能售货柜有效降低了人力、物力成本。突破了商品种类受限的约束,提供了更为丰富的产品选择。这两种无人零售模式允许商家轻松扩展业务,不受地理位置的限制。无论是在繁忙的商业区还是在偏僻的区域,都可以根据需求灵活部署这些设备。这两种模式主要有三种类型:称重识别、无线射频、基于计算机视觉的商品识别。其中,基于计算机视觉的商品识别,能够精确识别各种复杂场景下的商品,有效解决光照、拍摄角度、拍摄距离等不同环境条件对采集的图像的影响,有效应对商品摆放拥挤和相互遮挡等情况,实现自动化、高准确率的商品识别。、
YOLOV8结构图
数据集
收集第六届“信也科技杯”图像算法大赛提供的公开数据集,并进行有效性检验,去除重复无效的图片。该数据集是VOC格式(使用 XML 文件标注标签信息),而支持 YOLOv8训练的label格式为 YOLO 格式(图片标签文件格式为 TXT)。因此需要label转化为 TXT 格式。同时为了更好的训练模型与验证模型