算法设计与分析:枚举和递推的运用

目录

第1关:双关系递推数列

任务描述

相关知识

枚举算法的两种框架

递推算法的实施步骤

问题求解思路

编程要求

测试说明


第1关:双关系递推数列

任务描述

本关任务:运用枚举和递推的基本思想,通过编程计算出双关系递推数列。设集合 M 定义如下:

1.初始 1∈M;

2.若x∈M,则有2x+1∈M,5x−1∈M;

3.再无其它的数属于M。

试求集合M中的元素从小到大排列后所得序列的第n项,其中n<10001。

相关知识

为了完成本关任务,你需要掌握:1.枚举算法的两种框架,2.递推算法的实施步骤,3.问题求解思路。

枚举算法的两种框架

枚举的本质就是从所有的备选答案中去查询正确的解。一般的,使用枚举算法需要满足两个基本条件:

  • 备选答案的数量是确定的或是有限个数的;
  • 备选答案的范围在求解之前也应该是确定的。

枚举算法有两种常见的框架:区间枚举和递增枚举。它们在不同的任务中都有着各自的优势。

区间枚举的主要思想是对于一个给定的闭区间,从该区间的下限一直逐个枚举到该区间的上限,其伪代码如下所示:

  1. n=0;
  2. for(k=<区间下限>;k<=<区间上限>;k++)
  3. {
  4. <运算操作序列>;
  5. if(<约束条件>)
  6. {
  7. printf(<满足要求的解>);
  8. n++;
  9. }
  10. }
  11. printf(<解的个数>);

递增枚举的主要思想是从给定的枚举起点开始,一直逐个枚举,直到找到满足条件的解,程序结束,其伪代码如下所示:

  1. k=<枚举起点>
  2. while(1)
  3. {
  4. k++;
  5. <运算操作序列>;
  6. if(<约束条件>)
  7. {
  8. printf(<满足要求的解>);
  9. return;
  10. }
  11. }

递推算法的实施步骤

递推的定义:给定一个数的序列H0​,H1​,...,Hn​,...,若存在整数n0​,使当n>n0​时,可以用等号(或大于号、或小于号)将Hn​与其前面的某些项Hi​,i∈[0,n0​]联系起来,这样的式子就叫做Hn​的递推式。递推算法的具体实施步骤如下:

  1. 确定递推变量:递推变量可以是简单变量,也可以是一维或多维数组;
  2. 建立递推关系:递推关系是递推的依据,是解决递推问题的关键;
  3. 确定初始值和边界条件:根据问题最简单情形的数据,确定递推变量的初始值和边界条件,这是递推的基础;
  4. 对递推过程进行控制:和枚举算法互相配合,完成递推问题的求解。

问题求解思路

该问题已经给出了递推变量x和递推关系2x+1,5x−1,以及初始值为x=1,但是不知道边界条件,也就是说要递推出足够多的项,然后才能找到排序后的第n项。

借助从小到大排序这一限制条件,我们可以设置两个变量,分别控制递推关系2x+1和5x−1的递推进程,使得依次递推出的序列是有序的,那么边界条件即为第n项递推的结束。

例如n=10时,通过递推可以得到第10项为31,具体步骤如下:

1.第1步:给定数组m,从下标1开始存储有序递推数列,初始值m[1]=1,设定p2​=p5​=1,分别表示递推关系F2​(x)=2x+1和F5​(x)=5x−1的上一项递推变量x在数组m中的索引。

2.第2步:分别计算两个递推式的值,若F2​(m[p2​])<F5​(m[p5​]),则数组m的第i=2项为m[2]=F2​(m[p2​]),并更新p2​=p2​+1;若F2​(m[p2​])>F5​(m[p5​]),则数组m的第i=2项为m[2]=F5​(m[p5​]),并更新p5​=p5​+1;若F2​(m[p2​])=F5​(m[p5​]),则数组m的第i=2项为m[2]=F2​(m[p2​]),并更新p2​=p2​+1,p5​=p5​+1。

3.第3步至第n步:按照第2中的递推过程,依次递推出第3项,第4项,直到第n项的值。

 

编程要求

本关的编程任务是补全右侧代码片段mainBeginEnd中间的代码,具体要求如下:

  • main中,根据枚举和递推的基本思想,计算出双关系递推数列的前n项,并从小到大存储到数组m中,下标从1开始,即第一项为m[1]=1

测试说明

平台将自动编译补全后的代码,并生成若干组测试数据,接着根据程序的输出判断程序是否正确。

以下是平台的测试样例:

测试输入:10 预期输出:31

//
//  main.cpp
//  step2
//
//  Created by ljpc on 2018/12/8.
//  Copyright © 2018年 ljpc. All rights reserved.
//

#include <iostream>
#include <cstdio>

int main(int argc, const char * argv[]) {
 
    long long m[10001];     // 数组:从小到大保存的集合M的元素
    int n;                  // 查询第n项
    int p2;                 // F2(x)=2x+1的索引指针
    int p5;                  // F5(x)=5x-1的索引指针
    
    scanf("%d",&n);
    
    m[1]=1;
    p2=1;
    p5=1;
    
    // 请在这里补充代码,完成本关任务
    /********* Begin *********/
    int sum = m[1];
	for(int i=2;i<=n;i++){
		int tmp2 = 2*m[p2]+1;	
		int tmp5 = 5*m[p5]-1;
		if(tmp2>tmp5){
			m[i] = tmp5;
			p5++;
		}
		else if(tmp2<tmp5){
			m[i] = tmp2;
			p2++;
		}
		else{
			m[i] = tmp2;
			p2++;
			p5++;
		}
		sum+=m[i];
	} 
    /********* End *********/

    
    printf("%lld\n",m[n]);
 
    return 0;
}


 

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
专题十:算法分析与计 1.常用的算法计方法:   1.1 迭代法   1.2 穷举搜索法   1.3 递推法   1.4 递归法   1.5 贪婪法   1.6 分治法   1.7 动态规划法   1.8 回溯法 算法基础部分: 算法是对特问题求解步骤的一种描述,算法是指令的有限序列,其中每一条指令表示一个或多个操作。 算法具有以下5个属性:   有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。   确性:算法中每一条指令必须有确切的含义。不存在二义性。只有一个入口和一个出口   可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。   输入:一个算法有零个或多个输入,这些输入取自于某个特对象的集合。   输出:一个算法有一个或多个输出,这些输出同输入有着某些特关系的量。 所以对应的算法计的要求:   正确性:算法应满足具体问题的需求;   可读性:算法应该好读,以有利于读者对程序的理解;   健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。   效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。一般这两者与问题的规模有关。 1.1 迭代法: 迭代法是用于求方程或方程组近似根的一种常用的算法计方法。方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1)选一个方程的近似根,赋给变量x0; (2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; (3)当x0与x1的差的绝对值还小于指的精度要求时,重复步骤(2)的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 【算法】迭代法求方程的根 { x0=初始近似根; do { x1=x0; x0=g(x1); /*按特的方程计算新的近似根*/ } while ( fabs(x0-x1)>Epsilon); printf(“方程的近似根是%f\n”,x0); } 迭代算法也常用于求方程组的根,令 X=(x0,x1,…,xn-1) 方程组为: xi=gi(X) (I=0,1,…,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 { for (i=0;i<n;i++) x[i]=初始近似根; do { for (i=0;i<n;i++) y[i]=x[i]; for (i=0;i<n;i++) x[i]=gi(X); for (delta=0.0,i=0;i<n;i++) if (fabs(y[i]-x[i])>delta) delta=fabs(y[i]-x[i]); } while (delta>Epsilon); for (i=0;i<n;i++) printf(“变量x[%d]的近似根是 %f”,I,x[i]); printf(“\n”); } 具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 1.2 穷举搜索法: 穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从中找出那些符合要求的候选解作为问题的解。 要解决的问题只有有限种可能,在没有更好算法时总可以用穷举搜索的办法解决,即逐个的检查所有可能的情况。可以想象,情况较多时这种方法极为费时。实际上并不需要机械的检查每一种情况,常常是可以提前判断出某些情况不可能取到最优解,从而可以提前舍弃这些情况。这样也是隐含的检查了所有可能的情况,既减少了搜索量,又保证了不漏掉最优解。 【问题】 将A、B、C、D、E、F这六个变量排成如图所示的三角形,这六个变量分别取[1,6]上的整数,且均不相同。求使三角形三条边上的变量之和相等的全部解。如图就是一个解。 程序引入变量a、b、c、d、e、f,并让它们分别顺序取1至6的整数,在它们互不相同的条件下,测试由它们排成的如图所示的三角形三条边上的变量之和是否相等,如相等即为一种满足要求的排列,把它们输出。当这些变量取尽所有的组合后,程序就可得到全部可能的解。细节见下面的程序。 # include <stdio.h> void main() { int a,b,c,d,e,f; for (a=1;a<=6;a++) //a,b,c,d,e依次取不同的值 for (b=1;b<=6;b++) { if (b==a) continue; for (c=1;c<=6;c++) { if (c==a)||(c==b) continue; for (d=1;d<=6;d++) { if (d==a)||(d==b)||(d==c) continue; for (e=1;e<=6;e++) { if (e==a)||(e==b)||(e==c)||(e==d) continue; f=21-(a+b+c+d+e);//最后一个用减法算 if ((a+b+c==c+d+e))&&(a+b+c==e+f+a)) { printf(“%6d,a); printf(“%4d%4d”,b,f); printf(“%2d%4d%4d”,c,d,e); scanf(“%c”); } } } } } }

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shining0596

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值