5-2 SVM

视频:https://www.bilibili.com/video/BV1D64y1f7r6?p=2&spm_id_from=pageDriver

基础差,理解的还是很模糊呜呜呜~

1了解:svm: (support vector machine)支持向量机,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解,在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

这篇对svm解释 的很详细  https://blog.csdn.net/v_july_v/article/details/7624837

2 梯度方向与等高线垂直证明:

3 Python实现方式:

线性,基础:

from sklearn import svm 
 
x = [[2,0,1],[1,1,2],[2,3,3]] 
y = [0,0,1] #分类标记 
clf = svm.SVC(kernel = 'linear') #SVM模块,svc,线性核函数 
clf.fit(x,y) 
 
print(clf) 
 
print(clf.support_vectors_) #支持向量点 
 
print(clf.support_) #支持向量点的索引 
 
print(clf.n_support_) #每个class有几个支持向量点 
 
print(clf.predict([2,0,3])) #预测 

线性,展示图:

from sklearn import svm 
import numpy as np 
import matplotlib.pyplot as plt 
 
np.random.seed(0) 
x = np.r_[np.random.randn(20,2)-[2,2],np.random.randn(20,2)+[2,2]] #正态分布来产生数字,20行2列*2 
y = [0]*20+[1]*20 #20个class0,20个class1 
 
clf = svm.SVC(kernel='linear') 
clf.fit(x,y) 
 
w = clf.coef_[0] #获取w 
a = -w[0]/w[1] #斜率 
#画图划线 
xx = np.linspace(-5,5) #(-5,5)之间x的值 
yy = a*xx-(clf.intercept_[0])/w[1] #xx带入y,截距 
 
#画出与点相切的线 
b = clf.support_vectors_[0] 
yy_down = a*xx+(b[1]-a*b[0]) 
b = clf.support_vectors_[-1] 
yy_up = a*xx+(b[1]-a*b[0]) 
 
print("W:",w) 
print("a:",a) 
 
print("support_vectors_:",clf.support_vectors_) 
print("clf.coef_:",clf.coef_) 
 
plt.figure(figsize=(8,4)) 
plt.plot(xx,yy) 
plt.plot(xx,yy_down) 
plt.plot(xx,yy_up) 
plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80) 
plt.scatter(x[:,0],x[:,1],c=y,cmap=plt.cm.Paired) #[:,0]列切片,第0列 
 
plt.axis('tight') 
 
plt.show() 

下面是代码及详细解释(基于sklearn包):   参考代码https://blog.csdn.net/qq_38150441/article/details/80533478

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]

##开始训练
clf=svm.SVC()  ##默认参数:kernel='rbf'
clf.fit(x,y)

#print("预测...")
#res=clf.predict([[2,2]])  ##两个方括号表面传入的参数是矩阵而不是list

##根据训练出的模型绘制样本点
for i in x:
    res=clf.predict(np.array(i).reshape(1, -1))
    if res > 0:
        plt.scatter(i[0],i[1],c='r',marker='*')
    else :
        plt.scatter(i[0],i[1],c='g',marker='*')

##生成随机实验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##回执实验数据点
for i in rdm_arr:
    res=clf.predict(np.array(i).reshape(1, -1))
    if res > 0:
        plt.scatter(i[0],i[1],c='r',marker='.')
    else :
        plt.scatter(i[0],i[1],c='g',marker='.')
##显示绘图结果
plt.show()

1.2 在上面的代码中提到了kernel='rbf',这个参数是SVM的核心:核函数

    重新整理后的代码如下:    

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

##设置子图数量
fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(7,7))
ax0, ax1, ax2, ax3 = axes.flatten()

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
'''
    说明1:
       核函数(这里简单介绍了sklearn中svm的四个核函数,还有precomputed及自定义的)
        
    LinearSVC:主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想
    RBF:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数
    polynomial:多项式函数,degree 表示多项式的程度-----支持非线性分类
    Sigmoid:在生物学中常见的S型的函数,也称为S型生长曲线

    说明2:根据设置的参数不同,得出的分类结果及显示结果也会不同
    
'''
##设置子图的标题
titles = ['LinearSVC (linear kernel)',  
          'SVC with polynomial (degree 3) kernel',  
          'SVC with RBF kernel',      ##这个是默认的
          'SVC with Sigmoid kernel']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))

def drawPoint(ax,clf,tn):
    ##绘制样本点
    for i in x:
        ax.set_title(titles[tn])
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='*')
        else :
           ax.scatter(i[0],i[1],c='g',marker='*')
     ##绘制实验点
    for i in rdm_arr:
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='.')
        else :
           ax.scatter(i[0],i[1],c='g',marker='.')

if __name__=="__main__":
    ##选择核函数
    for n in range(0,4):
        if n==0:
            clf = svm.SVC(kernel='linear').fit(x, y)
            drawPoint(ax0,clf,0)
        elif n==1:
            clf = svm.SVC(kernel='poly', degree=3).fit(x, y)
            drawPoint(ax1,clf,1)
        elif n==2:
            clf= svm.SVC(kernel='rbf').fit(x, y)
            drawPoint(ax2,clf,2)
        else :
            clf= svm.SVC(kernel='sigmoid').fit(x, y)
            drawPoint(ax3,clf,3)
    plt.show()

在svm模块中还有一个较为简单的线性分类函数:LinearSVC(),其不支持kernel参数,因为设计思想就是线性分类。如果确定数据 可以进行线性划分,可以选择此函数。跟kernel='linear'用法对比如下:

复制代码
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

##设置子图数量
fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(7,7))
ax0, ax1 = axes.flatten()

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]

##设置子图的标题
titles = ['SVC (linear kernel)',  
          'LinearSVC']

##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))

##画图函数
def drawPoint(ax,clf,tn):
    ##绘制样本点
    for i in x:
        ax.set_title(titles[tn])
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='*')
        else :
           ax.scatter(i[0],i[1],c='g',marker='*')
    ##绘制实验点
    for i in rdm_arr:
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='.')
        else :
           ax.scatter(i[0],i[1],c='g',marker='.')

if __name__=="__main__":
    ##选择核函数
    for n in range(0,2):
        if n==0:
            clf = svm.SVC(kernel='linear').fit(x, y)
            drawPoint(ax0,clf,0)
        else :
            clf= svm.LinearSVC().fit(x, y)
            drawPoint(ax1,clf,1)
    plt.show()
 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值