视频:https://www.bilibili.com/video/BV1D64y1f7r6?p=2&spm_id_from=pageDriver
基础差,理解的还是很模糊呜呜呜~
1了解:svm: (support vector machine)支持向量机,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解,在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
这篇对svm解释 的很详细 https://blog.csdn.net/v_july_v/article/details/7624837
2 梯度方向与等高线垂直证明:
3 Python实现方式:
线性,基础:
from sklearn import svm
x = [[2,0,1],[1,1,2],[2,3,3]]
y = [0,0,1] #分类标记
clf = svm.SVC(kernel = 'linear') #SVM模块,svc,线性核函数
clf.fit(x,y)
print(clf)
print(clf.support_vectors_) #支持向量点
print(clf.support_) #支持向量点的索引
print(clf.n_support_) #每个class有几个支持向量点
print(clf.predict([2,0,3])) #预测
线性,展示图:
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
x = np.r_[np.random.randn(20,2)-[2,2],np.random.randn(20,2)+[2,2]] #正态分布来产生数字,20行2列*2
y = [0]*20+[1]*20 #20个class0,20个class1
clf = svm.SVC(kernel='linear')
clf.fit(x,y)
w = clf.coef_[0] #获取w
a = -w[0]/w[1] #斜率
#画图划线
xx = np.linspace(-5,5) #(-5,5)之间x的值
yy = a*xx-(clf.intercept_[0])/w[1] #xx带入y,截距
#画出与点相切的线
b = clf.support_vectors_[0]
yy_down = a*xx+(b[1]-a*b[0])
b = clf.support_vectors_[-1]
yy_up = a*xx+(b[1]-a*b[0])
print("W:",w)
print("a:",a)
print("support_vectors_:",clf.support_vectors_)
print("clf.coef_:",clf.coef_)
plt.figure(figsize=(8,4))
plt.plot(xx,yy)
plt.plot(xx,yy_down)
plt.plot(xx,yy_up)
plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80)
plt.scatter(x[:,0],x[:,1],c=y,cmap=plt.cm.Paired) #[:,0]列切片,第0列
plt.axis('tight')
plt.show()
下面是代码及详细解释(基于sklearn包): 参考代码https://blog.csdn.net/qq_38150441/article/details/80533478
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
##开始训练
clf=svm.SVC() ##默认参数:kernel='rbf'
clf.fit(x,y)
#print("预测...")
#res=clf.predict([[2,2]]) ##两个方括号表面传入的参数是矩阵而不是list
##根据训练出的模型绘制样本点
for i in x:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
plt.scatter(i[0],i[1],c='r',marker='*')
else :
plt.scatter(i[0],i[1],c='g',marker='*')
##生成随机实验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##回执实验数据点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
plt.scatter(i[0],i[1],c='r',marker='.')
else :
plt.scatter(i[0],i[1],c='g',marker='.')
##显示绘图结果
plt.show()
1.2 在上面的代码中提到了kernel='rbf',这个参数是SVM的核心:核函数
重新整理后的代码如下:
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
##设置子图数量
fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(7,7))
ax0, ax1, ax2, ax3 = axes.flatten()
#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
'''
说明1:
核函数(这里简单介绍了sklearn中svm的四个核函数,还有precomputed及自定义的)
LinearSVC:主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想
RBF:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数
polynomial:多项式函数,degree 表示多项式的程度-----支持非线性分类
Sigmoid:在生物学中常见的S型的函数,也称为S型生长曲线
说明2:根据设置的参数不同,得出的分类结果及显示结果也会不同
'''
##设置子图的标题
titles = ['LinearSVC (linear kernel)',
'SVC with polynomial (degree 3) kernel',
'SVC with RBF kernel', ##这个是默认的
'SVC with Sigmoid kernel']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
def drawPoint(ax,clf,tn):
##绘制样本点
for i in x:
ax.set_title(titles[tn])
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='*')
else :
ax.scatter(i[0],i[1],c='g',marker='*')
##绘制实验点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='.')
else :
ax.scatter(i[0],i[1],c='g',marker='.')
if __name__=="__main__":
##选择核函数
for n in range(0,4):
if n==0:
clf = svm.SVC(kernel='linear').fit(x, y)
drawPoint(ax0,clf,0)
elif n==1:
clf = svm.SVC(kernel='poly', degree=3).fit(x, y)
drawPoint(ax1,clf,1)
elif n==2:
clf= svm.SVC(kernel='rbf').fit(x, y)
drawPoint(ax2,clf,2)
else :
clf= svm.SVC(kernel='sigmoid').fit(x, y)
drawPoint(ax3,clf,3)
plt.show()
在svm模块中还有一个较为简单的线性分类函数:LinearSVC(),其不支持kernel参数,因为设计思想就是线性分类。如果确定数据 可以进行线性划分,可以选择此函数。跟kernel='linear'用法对比如下:
复制代码
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
##设置子图数量
fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(7,7))
ax0, ax1 = axes.flatten()
#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
##设置子图的标题
titles = ['SVC (linear kernel)',
'LinearSVC']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##画图函数
def drawPoint(ax,clf,tn):
##绘制样本点
for i in x:
ax.set_title(titles[tn])
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='*')
else :
ax.scatter(i[0],i[1],c='g',marker='*')
##绘制实验点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='.')
else :
ax.scatter(i[0],i[1],c='g',marker='.')
if __name__=="__main__":
##选择核函数
for n in range(0,2):
if n==0:
clf = svm.SVC(kernel='linear').fit(x, y)
drawPoint(ax0,clf,0)
else :
clf= svm.LinearSVC().fit(x, y)
drawPoint(ax1,clf,1)
plt.show()