【机器学习】平均绝对误差(MAE:Mean Absolute Error)

平均绝对误差 (Mean Absolute Error, MAE) 是一种衡量预测值与实际值之间平均差异的统计指标。它在机器学习、统计学等领域中广泛应用,用于评估模型的预测精度。与均方误差 (MSE) 或均方误差根 (RMSE) 不同,MAE 使用误差的绝对值,因此它在处理异常值时更加稳定。

1. MAE 的定义和公式

给定预测值 \hat{y}_i​ 和真实值 y_i,MAE 的公式为:

\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|

其中:

  • n 是样本总数。
  • \hat{y}_i 是模型的预测值。
  • y_i​ 是对应的真实值。

MAE 表示了预测值与真实值之间的平均绝对差异。由于取了绝对值,每个误差的正负号被忽略,保证了所有差异的非负性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值