Stable Diffusion最全提示词写法教程(附10000+提示词库)

这一次篇章主要了解关于提示词的书写内容。我们需要了解掌握的内容细节比较多。索性是后续都会有插件帮助我们增效。

为了保证大家的学习过程以及文档的编写过程,这里我们都不加任何模型,单纯是用默认自带的即可;

提示词基础

基础书写规则

  • 所有单词都是通过英文书写,单词之间通过, 分割,注意是英文逗号;

  • 提示词之间是可以已通过换行书写的,并不会有什么影响;

  • 单个提示词的权重是1 , 默认情况下,越往前,权重越大;

  • 默认情况下,正反向提示词的单词数量在75以内,超过部分对于画面质量影响比较小;

我们通过几个例子展示,

关于单词数量:

img

关于描述,我们通过相同的提示词,然后不同的顺序来查看区别:

提示词:(一个女孩)(在广场)(敲架子鼓)(微笑)  
  
1:A girl,in the square,playing drums,smiling  
2:in the square,A girl,playing drums,smiling  

当把场景词放在前面之后,会发现人物会有一个相当于广角的处理。广场的占比提高,而对于第一张图而言,会将人物放在中心前面;

各种符号

目前可以在提示词中增加权重的方式,有各种符号。比如 小括号()、中括号[]以及大括号{}。都是可以微调提示词的权重的。

小括号() 增加权重

用来增加当前提示词的权重0.1倍

我们可以通过多层来确定权重,最多只能嵌套三层,最能够提升的权重就是1.331倍

推荐写法:还可以通过**😗* 来制定权重占比;

(一个女孩)(卷发)(在广场)(敲架子鼓)(微笑)  
1:A girl,curls,in the square,playing drums,smiling  
2:A girl,(curls),in the square,playing drums,smiling  # 将卷发增加了0.1倍  
3:A girl,(((curls))),in the square,playing drums,smiling  # 将卷发增加到1.331倍  
4:A girl,(curls:1.5),in the square,playing drums,smiling  # 将卷发增加到1.5倍  

img

这里分别使用4个不同的提示词,在相同情况下的出图效果,能够明显感觉到卷发在不同权重下的表现是不一样的。

Tips:建议推荐权重占比在[0.3-1.5]之间,再小,再大效果不太明显;

大括号{} 增加权重

用来增加当前提示词的权重0.05倍

我们可以通过多层来确定权重,最多只能嵌套三层,最能够提升的权重就是1.15倍

(一个女孩)(卷发)(在广场)(敲架子鼓)(微笑)  
1:A girl,curls,in the square,playing drums,smiling  
2:A girl,{curls},in the square,playing drums,smiling  # 将卷发增加了0.05倍  
3:A girl,{{{curls}}},in the square,playing drums,smiling  # 将卷发增加到1.15倍  

下面的图片是 增加了0.05倍以及增加到1.15倍的效果;

img

中括号 [] 降低权重

用来降低当前提示词的权重0.9倍

我们可以通过多层来确定权重,最多只能嵌套三层,最能够降低的权重就是0.729倍

(一个女孩)(卷发)(在广场)(敲架子鼓)(微笑)  
1:A girl,curls,in the square,playing drums,smiling  
2:A girl,[curls],in the square,playing drums,smiling  # 将卷发降低了0.9倍  
3:A girl,[[[curls]]],in the square,playing drums,smiling  # 将卷发降低到0.729倍  
4: A girl,(curls:0.6),in the square,playing drums,smiling  # 将卷发降低到0.6倍  

下面4张图分别就是不同提示词的权重出来的效果:很容易看出来最后降低权重的最后一张图片,卷发的关键词很少了;

img

尖括号 <> 调用lora

主要是用来调用lora,目的是为了更好产生所需要的特定特征的主题画面;

调用格式是:

<lora:文件触发:权重>  

比如我们通过下面提示词内容来产生:

一个女孩穿着汉服:  
1:a girl,wear Hanfu,  
2:a girl,wear Hanfu, <lora:hanfuTang_v35:1> # <lora:文件触发是hanfuTang_v35:权重是1>  
3:a girl,wear Hanfu, <lora:hanfuTang_v35:1.3> # <lora:文件触发是hanfuTang_v35:权重是1.3>  

下面是出图效果:

img

具体增加的lora,大家可以看文末,模型大家可以直接点击链接下载:

链接:https://pan.baidu.com/s/1eTkCnhsfk9nRD04FJfa3fQ?pwd=6ow6 提取码:6ow6

–来自百度网盘超级会员V9的分享

下划线 _ 链接词义

主要是通过_ 来链接词义。比如下面的提示词:

咖啡牛奶;  
1:coffee,milk  
2:coffee_milk  

下图第一张会把咖啡和牛奶都展示出来,第二张就是一个咖啡牛奶了;

img

提示词进阶

控制提示词生效时间

一般通过[]指定;常见的用法有以下几种:

通过不同的方式指定生成时间:  
  
提示词,湖泊中,很多水草和石头以及鱼  
1:lake,many aquatic_plants and stones , fish  
2:lake,many aquatic_plants and stones , [fish:0.8] #在生成图片时,当采样执行到80%时才生成鱼  
3:lake,many aquatic_plants and stones , [fish::0.8] #在生成图片时,一开始采样执行到80%时都会生成鱼,达到80%后就不计算鱼的采样了  
3:lake,many aquatic_plants, [stones:fish:0.8] #在生成图片时,前80%采样是石头,后20%是鱼的采样,整个图片以石头为主  
4:lake,many aquatic_plants, [stones|fish] # 生成图片是交替采样,先石头,然后鱼 再石头 然后鱼依次类推  

在这里插入图片描述

img

这里仔细看看是能看到区别的,另外一点就是如果我们想要生成一个女孩红绿头发,可以参考使用最后一种书写格式:

a girl,[black|red] hair  

img

推荐提示词写法

按照我们之前说的关于默认权重以及一些基础性规则写法,我们可以推荐一整套对应的提示词流程:

比如我们想要生成一个类似的图片:

一条金黄色的中国龙,遨游在天空;  

那么按照要求,我们需要生成的图片就按照如下进行排列:

描述场景提示词中文提示词英文作用
画质词、画风词最高质量,极致的细节,超高清,8k,超现实图片,极高分辨率the best quality,extreme detail,ultra-high definition,8k,Surreal Photo,incredibly absurdres强调画质
画面主体描述一条鳞甲是金色和红色的中国龙,高品质的纹理,复杂的细节,极其细致的鳞片Highly detailed textured scales Dynamic shot of a lovely golden and red Chinese dragon, extremely detailed scales High quality textures, intricate details, detailed textures描述细节
环境、场景、灯光、构图夜晚的星空中,空中有烟花,中国龙头部特写,电影光,龙尾在身后摇曳,中国龙遨游在天空中,Starry sky at night with fireworks in the sky, close-up of the head of a Chinese dragon, movie light, dragon tail swaying behind it, Chinese dragon flying in the sky,描述细节
Lora模型这里就可以在对应的模型网站中找自己比较喜欢的模型,然后下载搭配使用即可。调用深化细节
负面词放通用负面词即可,在之前文档里面有

具体的大模型使用,大家看后续章节文末即可,对应我这一次使用的大模型连接和对应的lora连接在下面:

大模型链接:链接:https://pan.baidu.com/s/17Z8py0HW6okKnKEOmKR_mg?pwd=1hhj 提取码:1hhj

–来自百度网盘超级会员V9的分享

lora模型链接:链接:https://pan.baidu.com/s/1ojpbnFXcFW0wD9n-Tpu7oQ?pwd=0nx8 提取码:0nx8

–来自百度网盘超级会员V9的分享

最后我们开始激动人心的抽卡环节,选择一张你觉得还不错的图片即可:

提示词推荐网站以及插件

这一部分我们就带着大家一起汇总一些常见的提示词网站以及好用的插件,帮助大家更好的写好提示词。

推荐网站

常见的一些可以提升你提示词的网站:

网站网站作用网站图片
https://lexica.art/通过你想要搜索的关键词,查看图片以及对应的提示词在这里插入图片描述
https://tag.redsex.cc/咒语生成器,找到自己想要描述的场景,只需要通过点击的方式就可以将提示词完成在这里插入图片描述
https://prompthero.com/stable-diffusion-prompts通过搜索的关键词来查看照片对应的提示词,优点是它整合了很多目前市面上的AI工具。
https://www.4b3.com/和prompthero类似,也是整合了很多AI工具的提示词
https://tags.novelai.dev/也是一款咒语生成器,用来生成对应的咒语,操作上稍微麻烦一点点,但是很有互联网电商属性,感觉自己不是在写提示词而是在购物

推荐安装插件

目前大家使用提示词的插件,推荐以下几个,关于如何使用安装插件,请查看后续教程。

  • 插件名称:tagcomplete (“提示词”自动补齐插件) Github:https://github.com/DominikDoom/a1111-sd-webui-tagcomplete.git

  • 插件名称:all-in-one (“提示词”自动翻译插件) Github: https://github.com/Physton/sd-webui-prompt-all-in-one.git

  • 插件名称:easy-prompt-selector (“提示词”分类索引神器) Github: https://github.com/blue-pen5805

Stable Diffusion 最强提示词手册

  • Stable Diffusion介绍
  • OpenArt介绍
  • 提示词(Prompt) 工程介绍

在这里插入图片描述

第一章、提示词格式

  • 提问引导
  • 示例
  • 单词的顺序

在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

第二章、修饰词(Modifiers)

  • Photography/摄影
  • Art Mediums/艺术媒介
  • Artists/艺术家
  • Illustration/插图
  • Emotions/情感
  • Aesthetics/美学

在这里插入图片描述

在这里插入图片描述

第三章、 Magic words(咒语)

  • Highly detailed/高细节
  • Professional/专业
  • Vivid Colors/鲜艳的颜色
  • Bokeh/背景虚化
  • Sketch vs Painting/素描 vs 绘画

在这里插入图片描述

第四章、Stable Diffusion参数

  • Resolution/分辨率
  • CFC/提词相关性
  • Step count/步数
  • Seed/种子
  • Sampler/采样
  • 反向提示词(Prompt)

在这里插入图片描述

第5章 img2img(图生图),in/outpainting(扩展/重绘)

  • 将草图转化为专业艺术作品
  • 风格转换
  • lmg2lmg 变体
  • Img2lmg+多个AI问题
  • lmg2lmg 低强度变体
  • 重绘
  • 扩展/裁剪

第6章 重要提示

  • 词语的顺序和词语本身一样重要
  • 不要忘记常规工具
  • 反向提示词(Prompt)

第7章 OpenArt展示

  • 提示词 (Prompt)
  • 案例展示

篇幅有限,这里就不一一展示了,有需要的朋友可以点击下方的卡片进行领取!

在这里插入图片描述

在版本控制系统中,有效地管理分支对于保持项目的模块化和独立性至关重要。为了深入理解这一过程,我建议参考《SVN入门指南:从基础到实践》,这本书提供了从基础概念到实际操作的全面指导。 参考资源链接:[SVN入门指南:从基础到实践](https://wenku.csdn.net/doc/6412b5fabe7fbd1778d4512d?spm=1055.2569.3001.10343) 首先,你需要一个运行中的Subversion服务器和TortoiseSVN客户端。假设你已经有一个已经初始化的版本库和一个本地的工作拷贝。 1. 创建分支: - 在TortoiseSVN中,右键点击工作拷贝的根目录。 - 选择“TortoiseSVN”,然后选择“分支/标记”选项。 - 在弹出的对话框中,输入新分支的名称,并指定源路径。 - 选择适当的版本号作为分支的起点。 - 点击“确定”,系统将创建分支并同步到版本库。 2. 切换工作拷贝到分支: - 在文件浏览器中右键点击工作拷贝的根目录,选择“SVN Checkout”。 - 输入分支的URL,如果之前已经检出过,可以通过右键点击选择“更新到修订版本”然后输入分支的修订版本号。 - 点击“确定”以更新工作拷贝到分支。 3. 在分支上进行更改并提交: - 在分支上进行代码更改,然后使用TortoiseSVN的“提交”功能来保存你的更改到版本库。 - 这样,你就可以在分支上独立工作,而不会影响主干。 4. 合并分支到主干: - 当你完成分支上的更改并准备将这些更改合并回主干时,在主干的工作拷贝上,右键点击并选择“合并”。 - 选择“合并一个范围的修订版本”,然后输入分支的URL和分支的修订版本范围。 - 检查合并日志并进行合并。如果遇到冲突,TortoiseSVN会标记出来,你需要手动解决这些冲突。 - 解决完所有冲突后,提交合并结果到主干。 在进行分支管理时,请记住始终与团队成员进行沟通,以便在合并前解决任何可能的问题。此外,了解合并算法和冲突解决策略对于避免合并时出现的问题非常重要。如果你希望获得更深入的指导和更多的实战技巧,我建议继续研读《SVN入门指南:从基础到实践》,这将帮助你成为SVN和TortoiseSVN的专家。 参考资源链接:[SVN入门指南:从基础到实践](https://wenku.csdn.net/doc/6412b5fabe7fbd1778d4512d?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值