[MIT]微积分重点 第四课 指数函数(exponential) 学习笔记

0.先上本节课目录:

在这里插入图片描述

讲的顺序不完全按照目录来的,下面就按照讲的顺序来。

1.推导指数函数 y = e x y={\rm e}^x y=ex 的展开式

对于指数函数 y = e x y={\rm e}^x y=ex ,是通过微积分构造的函数,其最重要的性质就是它的导数就是其自身。用式子表示为:
d ⁡ y d ⁡ x = y (1) \frac{\operatorname dy}{\operatorname dx}=y\tag1 dxdy=y(1)
这是一个微分方程,是最简单的微分方程。
此时还需要一个初值,以防得到的结果不是 10 e x 10{\rm e}^x 10ex ,等等。
y ( 0 ) = 1 (2) y(0)=1\tag2 y(0)=1(2)
准备完成,下面就开始构造函数:
由其在0处的初值为1(式 (2) ),先构造
y ( x ) = 1 y(x)=1 y(x)=1
又由于它的导数就是其自身(式 (1) ):
d ⁡ y d ⁡ x = 1 \frac{\operatorname dy}{\operatorname dx}=1 dxdy=1
由此接着反推原函数:
y ( x ) = 1 + x y(x)=1+x y(x)=1+x
继续推到其导数:
d ⁡ y d ⁡ x = 1 + x \frac{\operatorname dy}{\operatorname dx}=1+x dxdy=1+x
原函数:
y ( x ) = 1 + x + 1 2 x 2 y(x)=1+x+\frac{1}{2}x^2 y(x)=1+x+21x2
导数:
d ⁡ y d ⁡ x = 1 + x + 1 2 x 2 \frac{\operatorname dy}{\operatorname dx}=1+x+\frac{1}{2}x^2 dxdy=1+x+21x2
原函数:
y ( x ) = 1 + x + 1 2 x 2 + 1 2 ⋅ 3 x 3 y(x)=1+x+\frac{1}{2}x^2+\frac{1}{2\cdot3}x^3 y(x)=1+x+21x2+231x3
导数:
d ⁡ y d ⁡ x = 1 + x + 1 2 x 2 + 1 2 ⋅ 3 x 3 \frac{\operatorname dy}{\operatorname dx}=1+x+\frac{1}{2}x^2+\frac{1}{2\cdot3}x^3 dxdy=1+x+21x2+231x3
这样写下去就没完没了了,它是无穷的,此时也发现了一些规律,可以推导出:
y ( x ) = 1 + x + 1 2 x 2 + 1 2 ⋅ 3 x 3 + ⋯ + x n n ! + ⋯ y(x)=1+x+\frac{1}{2}x^2+\frac{1}{2\cdot3}x^3+\cdots+\frac{x^n}{n!}+\cdots y(x)=1+x+21x2+231x3++n!xn+
d ⁡ y d ⁡ x = 1 + x + 1 2 x 2 + 1 2 ⋅ 3 x 3 + ⋯ + x n − 1 ( n − 1 ) ! + x n n ! + ⋯ \frac{\operatorname dy}{\operatorname dx}=1+x+\frac{1}{2}x^2+\frac{1}{2\cdot3}x^3+\cdots+\frac{x^{n-1}}{(n-1)!}+\frac{x^n}{n!}+\cdots dxdy=1+x+21x2+231x3++(n1)!xn1+n!xn+
这里阶乘( n ! n! n! )的增长要大于幂函数( x n x^n xn ),越是后面的式子对函数的影响越小。

2.用展开式证明 e x ⋅ e x = e 2 x {\rm e}^x\cdot {\rm e}^x={\rm e}^{2x} exex=e2x

大家都知道 e x ⋅ e x = e 2 x {\rm e}^x\cdot {\rm e}^x={\rm e}^{2x} exex=e2x ,下面将用展开式证明:
e x = 1 + x + 1 2 x 2 + 1 6 x 3 + ⋯ {\rm e}^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots ex=1+x+21x2+61x3+
e x = 1 + x + 1 2 x 2 + 1 6 x 3 + ⋯ {\rm e}^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots ex=1+x+21x2+61x3+
上面两式相乘,得到:
e x ⋅ e x = 1 + ( x + x ) + ( 1 2 x 2 + x 2 + 1 2 x 2 ) + ( 1 6 x 3 + 1 2 x 3 + 1 2 x 3 + 1 6 x 3 ) + ⋯ = 1 + 2 x + 1 2 ( 2 x ) 2 + 1 6 ( 2 x ) 3 + ⋯ = e 2 x \begin{aligned} {\rm e}^x\cdot {\rm e}^x&=1+(x+x)+(\frac{1}{2}x^2+x^2+\frac{1}{2}x^2)+(\frac{1}{6}x^3+\frac{1}{2}x^3+\frac{1}{2}x^3+\frac{1}{6}x^3)+\cdots \\ &=1+2x+\frac{1}{2}(2x)^2+\frac{1}{6}(2x)^3+\cdots \\ &={\rm e}^{2x} \end{aligned} exex=1+(x+x)+(21x2+x2+21x2)+(61x3+21x3+21x3+61x3)+=1+2x+21(2x)2+61(2x)3+=e2x

3.求 e {\rm e} e 的值与该函数图像

上述展开式就是教授认为第二重要的指数级数,顺便介绍了下最重要的几何级数(上述展开式去掉分数部分)。
x = 1 x=1 x=1 ,便可得到 e {\rm e} e
e = 1 + 1 + 1 2 + 1 6 + ⋯ = 2.71828 … \begin{aligned} {\rm e}&=1+1+\frac{1}{2}+\frac{1}{6}+\cdots \\[2ex] &=2.71828\ldots \end{aligned} e=1+1+21+61+=2.71828
顺便画了个图 y ( x ) = e x y(x)={\rm e}^x y(x)=ex
在这里插入图片描述

4.另一种求 e {\rm e} e 的方式

假如你每年可以从银行获取100%的利息,从1块钱开始,那么第一年年底可以获得2块钱。
如果银行每个月结一次利息,那么第一个月底可以获得:
( 1 + 1 12 ) \left (1+\frac{1}{12} \right ) (1+121)
年底可以获得:
( 1 + 1 12 ) 12 = 2.61303529 … \left (1+\frac{1}{12} \right )^{12}=2.61303529\ldots (1+121)12=2.61303529
每天结算一次,年底可以获得:
( 1 + 1 365 ) 365 = 2.71456748 … \left (1+\frac{1}{365} \right )^{365}=2.71456748\ldots (1+3651)365=2.71456748
是不是获得钱越来越像 e {\rm e} e 了,没错
lim ⁡ N → ∞ ( 1 + 1 N ) N = e \lim_{N \to \infty}{\left (1+\frac{1}{N} \right )^{N}}={\rm e} Nlim(1+N1)N=e
在这里插入图片描述

5.帯系数的一阶微分方程

d ⁡ y d ⁡ x = c y \frac{\operatorname dy}{\operatorname dx}=cy dxdy=cy
解为:
y ( x ) = e c x y(x)={\rm e}^{cx} y(x)=ecx

在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值