微积分-反函数6.2(指数函数及其导数)

函数 f ( x ) = 2 x f(x) = 2^x f(x)=2x 被称为指数函数,因为变量 x x x 是指数。它不应与幂函数 g ( x ) = x 2 g(x) = x^2 g(x)=x2 混淆,在幂函数中,变量是底数。

一般来说,指数函数是形如
f ( x ) = b x f(x) = b^x f(x)=bx
的函数,其中 b b b 是一个正常数。让我们回顾一下这意味着什么。

如果 x = n x = n x=n,是一个正整数,那么
b n = b ⋅ b ⋅ ⋯ ⋅ b b^n = b \cdot b \cdot \cdots \cdot b bn=bbb

如果 x = 0 x = 0 x=0,那么 b 0 = 1 b^0 = 1 b0=1,如果 x = − n x = -n x=n,其中 n n n 是一个正整数,那么
b − n = 1 b n b^{-n} = \frac{1}{b^n} bn=bn1

如果 x x x 是有理数, x = p q x = \frac{p}{q} x=qp,其中 p p p q q q 是整数且 q > 0 q > 0 q>0,那么
b x = b p q = b p q = ( b q ) p b^x = b^{\frac{p}{q}} = \sqrt[q]{b^p} = \left( \sqrt[q]{b} \right)^p bx=bqp=qbp =(qb )p

但如果 x x x 是无理数, b x b^x bx 的意义是什么呢?例如, 2 3 2^{\sqrt{3}} 23 5 π 5^{\pi} 5π 是什么意思?

为了帮助回答这个问题,我们首先来看函数 y = 2 x y = 2^x y=2x 的图像,其中 x x x 是有理数。图1展示了该图像的表示。我们希望将 y = 2 x y = 2^x y=2x 的定义域扩大到包括有理数和无理数。

在这里插入图片描述

图1中对应于 x x x 为无理数的点存在空缺。我们希望通过定义 f ( x ) = 2 x f(x) = 2^x f(x)=2x,其中 x ∈ R x \in \mathbb{R} xR,来填补这些空缺,使得 f f f 是一个递增的函数。特别地,因为无理数 3 \sqrt{3} 3 满足
1.7 < 3 < 1.8 1.7 < \sqrt{3} < 1.8 1.7<3 <1.8
我们必须有
2 1.7 < 2 3 < 2 1.8 2^{1.7} < 2^{\sqrt{3}} < 2^{1.8} 21.7<23 <21.8
并且我们知道 $2^{1.7}# 和 2 1.8 2^{1.8} 21.8 的含义,因为 1.7 1.7 1.7 1.8 1.8 1.8 是有理数。同样地,如果我们使用更好的 3 \sqrt{3} 3 的近似值,可以得到 2 3 2^{\sqrt{3}} 23 的更好的近似值:
1.73 < 3 < 1.74 ⇒ 2 1.73 < 2 3 < 2 1.74 1.732 < 3 < 1.733 ⇒ 2 1.732 < 2 3 < 2 1.733 1.7320 < 3 < 1.7321 ⇒ 2 1.7320 < 2 3 < 2 1.7321 1.73205 < 3 < 1.73206 ⇒ 2 1.73205 < 2 3 < 2 1.73206 . . . \begin{align*} 1.73 &< \sqrt{3} < 1.74 \quad \Rightarrow \quad 2^{1.73} < 2^{\sqrt{3}} < 2^{1.74}\\ 1.732 &< \sqrt{3} < 1.733 \quad \Rightarrow \quad 2^{1.732} < 2^{\sqrt{3}} < 2^{1.733}\\ 1.7320 &< \sqrt{3} < 1.7321 \quad \Rightarrow \quad 2^{1.7320} < 2^{\sqrt{3}} < 2^{1.7321}\\ 1.73205 &< \sqrt{3} < 1.73206 \quad \Rightarrow \quad 2^{1.73205} < 2^{\sqrt{3}} < 2^{1.73206}\\ &... \end{align*} 1.731.7321.73201.73205<3 <1.7421.73<23 <21.74<3 <1.73321.732<23 <21.733<3 <1.732121.7320<23 <21.7321<3 <1.7320621.73205<23 <21.73206...
可以证明,恰好存在一个数大于以下所有的数:
2 1.7 , 2 1.73 , 2 1.732 , 2 1.7320 , 2 1.73205 , … 2^{1.7}, \quad 2^{1.73}, \quad 2^{1.732}, \quad 2^{1.7320}, \quad 2^{1.73205}, \dots 21.7,21.73,21.732,21.7320,21.73205,
并且小于以下所有的数:
2 1.8 , 2 1.74 , 2 1.733 , 2 1.7321 , 2 1.73206 , … 2^{1.8}, \quad 2^{1.74}, \quad 2^{1.733}, \quad 2^{1.7321}, \quad 2^{1.73206}, \dots 21.8,21.74,21.733,21.7321,21.73206,

我们定义 2 3 2^{\sqrt{3}} 23 为这个数。通过前述的逼近过程,我们可以将其计算到小数点后六位:
2 3 ≈ 3.321997 2^{\sqrt{3}} \approx 3.321997 23 3.321997

类似地,我们可以定义 2 x 2^x 2x(或 b x b^x bx,如果 b > 0 b > 0 b>0)其中 x x x 为任意无理数。图2显示了如何通过填补图1中的所有空缺来完成函数 f ( x ) = 2 x f(x) = 2^x f(x)=2x, x ∈ R x \in \mathbb{R} xR 的图像。

在这里插入图片描述

一般来说,如果 b b b 是任意正数,我们定义

b x = lim ⁡ r → x b r r  rational (1) b^x = \lim_{r \to x} b^r \quad r \text{ rational} \tag{1} bx=rxlimbrr rational(1)

这个定义是有意义的,因为任何无理数都可以被我们想要的有理数逼近。例如,因为 3 \sqrt{3} 3 的小数表示为 3 = 1.7320508 ⋯ \sqrt{3} = 1.7320508 \cdots 3 =1.7320508,定义1表明 2 3 2^{\sqrt{3}} 23 是序列中的极限值
2 1.7 , 2 1.73 , 2 1.732 , 2 1.7320 , 2 1.73205 , 2 1.7320508 , … 2^{1.7}, \quad 2^{1.73}, \quad 2^{1.732}, \quad 2^{1.7320}, \quad 2^{1.73205}, \quad 2^{1.7320508}, \dots 21.7,21.73,21.732,21.7320,21.73205,21.7320508,

类似地, 5 π 5^{\pi} 5π 是以下序列的极限值
5 3.1 , 5 3.14 , 5 3.141 , 5 3.1415 , 5 3.14159 , 5 3.141592 , 5 3.1415926 , … 5^{3.1}, \quad 5^{3.14}, \quad 5^{3.141}, \quad 5^{3.1415}, \quad 5^{3.14159}, \quad 5^{3.141592}, \quad 5^{3.1415926}, \dots 53.1,53.14,53.141,53.1415,53.14159,53.141592,53.1415926,

可以证明定义1唯一地指定了 b x b^x bx,并使得函数 f ( x ) = b x f(x) = b^x f(x)=bx 连续。

函数族 y = b x y = b^x y=bx 的图像如图3所示,表示不同底数 b b b 的情况。注意,所有这些图像都经过相同的点 ( 0 , 1 ) (0, 1) (0,1),因为 b 0 = 1 b^0 = 1 b0=1 (当 b ≠ 0 b \neq 0 b=0 时)。还要注意,随着底数 b b b 变大,指数函数(对于 x > 0 x > 0 x>0)增长得更快。

在这里插入图片描述

图4显示了指数函数 y = 2 x y = 2^x y=2x 和幂函数 y = x 2 y = x^2 y=x2 的对比。两个图像交于三个点,但最终 y = 2 x y = 2^x y=2x 的指数曲线比抛物线 y = x 2 y = x^2 y=x2 增长得更快(参见图5)。

从图3可以看出,指数函数 y = b x y = b^x y=bx 基本上有三种情况。如果 0 < b < 1 0 < b < 1 0<b<1,指数函数递减;如果 b = 1 b = 1 b=1,它是常数;如果 b > 1 b > 1 b>1,它递增。这三种情况在图6中展示。

因为 ( 1 / b ) x = 1 b x = b − x (1/b)^x = \frac{1}{b^x} = b^{-x} (1/b)x=bx1=bx,函数 y = ( 1 / b ) x y = (1/b)^x y=(1/b)x 的图像是函数 y = b x y = b^x y=bx 围绕 y y y 轴的镜像。
在这里插入图片描述
指数函数的性质总结在以下定理中。

2 如果 b > 0 b > 0 b>0 b ≠ 1 b \neq 1 b=1,则 f ( x ) = b x f(x) = b^x f(x)=bx 是一个定义域为 R \mathbb{R} R 且值域为 ( 0 , ∞ ) (0, \infty) (0,) 的连续函数。特别地, b x > 0 b^x > 0 bx>0 对于所有 x x x 成立。如果 0 < b < 1 0 < b < 1 0<b<1, f ( x ) = b x f(x) = b^x f(x)=bx 是递减函数;如果 b > 1 b > 1 b>1, f f f 是递增函数。如果 a , b > 0 a, b > 0 a,b>0 x , y ∈ R x, y \in \mathbb{R} x,yR,那么:

  1. b x + y = b x b y b^{x + y} = b^x b^y bx+y=bxby
  2. b x − y = b x b y b^{x - y} = \frac{b^x}{b^y} bxy=bybx
  3. ( b x ) y = b x y (b^x)^y = b^{xy} (bx)y=bxy
  4. ( a b ) x = a x b x (ab)^x = a^x b^x (ab)x=axbx

指数函数之所以重要是因为其性质1-4,这些被称为指数定律。如果 x x x y y y 是有理数,那么这些定律在初等代数中是众所周知的。对于任意实数 x x x y y y,这些定律可以通过使用方程1从指数为有理数的特殊情况中推导出来。

以下极限可以从图6中的图像中读出,或通过无穷大处的极限定义来证明。

如果 b > 1 b > 1 b>1,则 lim ⁡ x → ∞ b x = ∞ \lim_{x \to \infty} b^x = \infty limxbx= lim ⁡ x → − ∞ b x = 0 \lim_{x \to -\infty} b^x = 0 limxbx=0
如果 0 < b < 1 0 < b < 1 0<b<1, 则 lim ⁡ x → ∞ b x = 0 \lim_{x \to \infty} b^x = 0 limxbx=0 lim ⁡ x → − ∞ b x = ∞ \lim_{x \to -\infty} b^x = \infty limxbx=

特别地,如果 b ≠ 1 b \neq 1 b=1,那么 x x x 轴是指数函数 y = b x y = b^x y=bx 图像的水平渐近线。

例1
(a) 求 lim ⁡ x → ∞ ( 2 − x − 1 ) \lim_{x \to \infty} \left( 2^{-x} - 1 \right) limx(2x1)
(b) 描绘函数 y = 2 − x − 1 y = 2^{-x} - 1 y=2x1 的图像。


(a)
lim ⁡ x → ∞ ( 2 − x − 1 ) = lim ⁡ x → ∞ [ ( 1 2 ) x − 1 ] = 0 − 1 = − 1 \begin{align*} \lim_{x \to \infty} \left( 2^{-x} - 1 \right) &= \lim_{x \to \infty} \left[ \left( \frac{1}{2} \right)^x - 1 \right]\\ &= 0 - 1\\ &= -1 \end{align*} xlim(2x1)=xlim[(21)x1]=01=1

(b) 我们将 y = ( 1 2 ) x − 1 y = \left( \frac{1}{2} \right)^x - 1 y=(21)x1 写成与部分 (a) 相同的形式。函数 y = ( 1 2 ) x y = \left( \frac{1}{2} \right)^x y=(21)x 的图像如图 3 所示,因此我们将其向下平移 1 个单位以获得图 7 中所示的函数 y = ( 1 2 ) x − 1 y = \left( \frac{1}{2} \right)^x - 1 y=(21)x1 的图像。(有关图像平移的复习,请参见 1.3 节。)部分 (a) 显示 y = − 1 y = -1 y=1 是一条水平渐近线。

在这里插入图片描述

指数函数在自然和社会的数学模型中非常常见。这里我们简要说明它是如何在描述人口增长时出现的。在第 6.5 节中,我们将进一步探讨这些以及其他应用。

在第 2.7 节中,我们考虑了每小时翻倍的细菌种群,得出如果初始种群为 n 0 n_0 n0,那么经过 t t t 小时后的种群数量由函数 f ( t ) = n 0 2 t f(t) = n_0 2^t f(t)=n02t 给出。这个种群函数是指数函数 y = 2 t y = 2^t y=2t 的一个常数倍数,因此它表现出我们在图 2 和图 5 中观察到的快速增长。在理想条件下(无限的空间、充足的营养且没有疾病),这种指数增长是自然界中实际发生情况的典型代表。

那么人类的人口呢?表 1 显示了 20 世纪全球人口的数据,图 8 则显示了相应的散点图。

在这里插入图片描述
在这里插入图片描述

图 8 中数据点的模式表明了指数增长,因此我们使用具有指数回归功能的图形计算器,应用最小二乘法,得到以下指数模型:
P = 1436.53 ⋅ ( 1.01395 ) t P = 1436.53 \cdot (1.01395)^t P=1436.53(1.01395)t
其中 t = 0 t = 0 t=0 对应于 1900 年。图 9 显示了这个指数函数与原始数据点的图像。我们看到指数曲线与数据点相当吻合。相对缓慢的人口增长时期可以用两次世界大战和 1930 年代的大萧条来解释。

在这里插入图片描述

1995 年,一篇论文详细描述了蛋白酶抑制剂 ABT-538 对人类免疫缺陷病毒 HIV-1 的作用。表 2 显示了 303 号病人在 ABT-538 治疗开始后的血浆病毒载量 V ( t ) V(t) V(t) 的数值,单位为每毫升 RNA 拷贝数, t t t 为治疗开始后的天数。相应的散点图如图 10 所示。
在这里插入图片描述

病毒载量的显著下降(见图 10)让我们联想到指数函数图像 y = b t y = b^t y=bt(如图 3 和图 6(a) 所示,底数 b b b 小于 1)。因此,我们通过指数函数来拟合病毒载量 V ( t ) V(t) V(t)。使用图形计算器或计算机,利用表 2 的数据进行指数回归,得到了如下模型:
V = 96.39785 ⋅ ( 0.818656 ) t V = 96.39785 \cdot (0.818656)^t V=96.39785(0.818656)t

图 11 展示了该指数函数与数据点的图像。可以看到,这个模型在治疗的第一个月内很好地拟合了病毒载量。

在这里插入图片描述

我们可以使用图 11 来估计病毒载量的半衰期,即病毒载量减少到其初始值一半所需的时间。

指数函数的导数

我们尝试使用导数的定义来计算指数函数 f ( x ) = b x f(x) = b^x f(x)=bx 的导数:

f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h = lim ⁡ h → 0 b x + h − b x h = lim ⁡ h → 0 b x b h − b x h = lim ⁡ h → 0 b x b h − 1 h \begin{align*} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{b^{x+h} - b^x}{h}\\ &= \lim_{h \to 0} \frac{b^x b^h - b^x}{h} = \lim_{h \to 0} b^x \frac{b^h - 1}{h} \end{align*} f(x)=h0limhf(x+h)f(x)=h0limhbx+hbx=h0limhbxbhbx=h0limbxhbh1

由于 b x b^x bx 不依赖于 h h h,所以可以将它提到极限的外面:

f ′ ( x ) = b x lim ⁡ h → 0 b h − 1 h f'(x) = b^x \lim_{h \to 0} \frac{b^h - 1}{h} f(x)=bxh0limhbh1

注意到这个极限是函数 f ( x ) = b x f(x) = b^x f(x)=bx 在 0 处导数的值,即:

lim ⁡ h → 0 b h − 1 h = f ′ ( 0 ) \lim_{h \to 0} \frac{b^h - 1}{h} = f'(0) h0limhbh1=f(0)

因此,我们已经证明了如果指数函数 f ( x ) = b x f(x) = b^x f(x)=bx 在 0 处可导,则它在每个点都可导,并且

f ′ ( x ) = f ′ ( 0 ) b x f'(x) = f'(0) b^x f(x)=f(0)bx

这个方程表明任何指数函数的变化率与函数本身成正比。(斜率与高度成正比)

对于 b = 2 b = 2 b=2 b = 3 b = 3 b=3,数值计算表明 f ′ ( 0 ) f'(0) f(0) 的极限存在,并且其数值分别为:

在这里插入图片描述

for  b = 2 , f ′ ( 0 ) = lim ⁡ h → 0 2 h − 1 h ≈ 0.69 \text{for } b = 2, \quad f'(0) = \lim_{h \to 0} \frac{2^h - 1}{h} \approx 0.69 for b=2,f(0)=h0limh2h10.69

for  b = 3 , f ′ ( 0 ) = lim ⁡ h → 0 3 h − 1 h ≈ 1.10 \text{for } b = 3, \quad f'(0) = \lim_{h \to 0} \frac{3^h - 1}{h} \approx 1.10 for b=3,f(0)=h0limh3h11.10

实际上,可以证明这些极限存在,并且精确到六位小数的值为:

d d x ( 2 x ) ∣ x = 0 ≈ 0.693147 d d x ( 3 x ) ∣ x = 0 ≈ 1.098612 \frac{d}{dx} \left( 2^x \right) \Big|_{x=0} \approx 0.693147 \quad \frac{d}{dx} \left( 3^x \right) \Big|_{x=0} \approx 1.098612 dxd(2x) x=00.693147dxd(3x) x=01.098612

因此,根据方程 4,我们有:

d d x ( 2 x ) ≈ ( 0.69 ) 2 x d d x ( 3 x ) ≈ ( 1.10 ) 3 x \frac{d}{dx} \left( 2^x \right) \approx (0.69)2^x \quad \frac{d}{dx} \left( 3^x \right) \approx (1.10)3^x dxd(2x)(0.69)2xdxd(3x)(1.10)3x

在所有可能的底数 b b b 中,最简单的微分公式出现在 f ′ ( 0 ) = 1 f'(0) = 1 f(0)=1 时。基于对 f ′ ( 0 ) f'(0) f(0) 的估计,对于 b = 2 b = 2 b=2 b = 3 b = 3 b=3,可以合理推测存在一个介于 2 和 3 之间的数 b b b,使得 f ′ ( 0 ) = 1 f'(0) = 1 f(0)=1。传统上,这个值用字母 e e e 来表示。因此我们有如下定义:

7 e e e 的定义
e e e 是这样一个数,使得
lim ⁡ h → 0 e h − 1 h = 1 \lim_{h \to 0} \frac{e^h - 1}{h} = 1 h0limheh1=1

几何上,这意味着在所有的指数函数 y = b x y = b^x y=bx 中,函数 f ( x ) = e x f(x) = e^x f(x)=ex 是在点 ( 0 , 1 ) (0,1) (0,1) 处切线斜率恰好为 1 的函数。我们称函数 f ( x ) = e x f(x) = e^x f(x)=ex自然指数函数

在这里插入图片描述

如果我们令 b = e b = e b=e,并且因此 f ′ ( 0 ) = 1 f'(0) = 1 f(0)=1 (见方程 4),则我们得到以下重要的微分公式:

8 自然指数函数的导数
d d x ( e x ) = e x \frac{d}{dx}(e^x) = e^x dxd(ex)=ex

因此,指数函数 f ( x ) = e x f(x) = e^x f(x)=ex 具有它是自身导数的性质。这一事实的几何意义是:曲线 y = e x y = e^x y=ex 在任何点的切线斜率等于该点的 y 坐标。

例2 求函数 y = e tan ⁡ x y = e^{\tan x} y=etanx 的导数

使用链式法则,我们令 u = tan ⁡ x u = \tan x u=tanx。因此有 y = e u y = e^u y=eu,所以

d y d x = d y d u ⋅ d u d x = e u ⋅ d u d x = e tan ⁡ x ⋅ sec ⁡ 2 x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^u \cdot \frac{du}{dx} = e^{\tan x} \cdot \sec^2 x dxdy=dudydxdu=eudxdu=etanxsec2x

一般来说,如果我们将公式8与链式法则结合,如同在示例2中所做的那样,我们得到:

d d x ( e u ) = e u ⋅ d u d x (9) \frac{d}{dx}(e^u) = e^u \cdot \frac{du}{dx} \tag{9} dxd(eu)=eudxdu(9)

例3 如果 y = e − 4 x sin ⁡ 5 x y = e^{-4x} \sin 5x y=e4xsin5x,求 y ′ y' y

使用公式 9乘积法则,我们得到:

y ′ = e − 4 x ( cos ⁡ 5 x ) ( 5 ) + ( sin ⁡ 5 x ) e − 4 x ( − 4 ) = e − 4 x ( 5 cos ⁡ 5 x − 4 sin ⁡ 5 x ) y' = e^{-4x}(\cos 5x)(5) + (\sin 5x)e^{-4x}(-4) = e^{-4x}(5 \cos 5x - 4 \sin 5x) y=e4x(cos5x)(5)+(sin5x)e4x(4)=e4x(5cos5x4sin5x)

我们已经知道 e e e 是一个介于 2 和 3 之间的数,但是我们可以使用公式 4 来更准确地估计 e e e 的数值。令 e = 2 c e = 2^c e=2c,那么

e x = 2 c x e^x = 2^{cx} ex=2cx

如果 f ( x ) = 2 x f(x) = 2^x f(x)=2x,那么根据公式 4 我们有 f ′ ( x ) = k 2 x f'(x) = k2^x f(x)=k2x,其中 k k k 的值是

f ′ ( 0 ) ≈ 0.693147 f'(0) \approx 0.693147 f(0)0.693147

(参见公式 5)。因此,根据链式法则,

e x = d d x ( e x ) = d d x ( 2 c x ) = k 2 c x d d x ( c x ) = c k 2 c x e^x = \frac{d}{dx}(e^x) = \frac{d}{dx}(2^{cx}) = k2^{cx} \frac{d}{dx}(cx) = ck2^{cx} ex=dxd(ex)=dxd(2cx)=k2cxdxd(cx)=ck2cx

x = 0 x = 0 x=0 时,我们有 1 = c k 1 = ck 1=ck,因此 c = 1 / k c = 1/k c=1/k,并且

e = 2 1 / k ≈ 2 1 / 0.693147 ≈ 2.71828 e = 2^{1/k} \approx 2^{1/0.693147} \approx 2.71828 e=21/k21/0.6931472.71828

可以证明,精确到小数点后20位的 e e e 值为

e ≈ 2.71828182845904523536 e \approx 2.71828182845904523536 e2.71828182845904523536

e e e 的小数部分是无限不循环的,因为 e e e 是一个无理数。

例4 我们曾考虑了一群在均匀营养介质中生长的细菌群体。我们证明了如果该群体每小时倍增一次,那么 t t t 小时后的群体数量为:

n = n 0 2 t n = n_0 2^t n=n02t

其中, n 0 n_0 n0 是初始群体数量。现在我们可以使用公式 (4) 和 (5) 来计算增长率:

d n d t ≈ n 0 ( 0.693147 ) 2 t \frac{dn}{dt} \approx n_0 (0.693147) 2^t dtdnn0(0.693147)2t

例如,如果初始群体数量为 n 0 = 1000 n_0 = 1000 n0=1000 个细胞,那么两小时后的增长率是:

d n d t ∣ t = 2 ≈ ( 1000 ) ( 0.693147 ) 2 t ∣ t = 2 = ( 4000 ) ( 0.693147 ) ≈ 2773  细胞/小时 \begin{align*} \frac{dn}{dt} \Big|_{t=2} &\approx (1000)(0.693147) 2^t \Big|_{t=2}\\ &= (4000)(0.693147) \approx 2773 \text{ 细胞/小时} \end{align*} dtdn t=2(1000)(0.693147)2t t=2=(4000)(0.693147)2773 细胞/小时

例5 求函数 f ( x ) = x e − x f(x) = xe^{-x} f(x)=xex 的绝对最大值

我们通过求导来找到任何临界点:

f ′ ( x ) = x e − x ( − 1 ) + e − x ( 1 ) = e − x ( 1 − x ) f'(x) = xe^{-x}(-1) + e^{-x}(1) = e^{-x}(1 - x) f(x)=xex(1)+ex(1)=ex(1x)

由于指数函数始终为正,我们可以看到当 1 − x > 0 1 - x > 0 1x>0 时, f ′ ( x ) > 0 f'(x) > 0 f(x)>0,即当 x < 1 x < 1 x<1 时。类似地,当 x > 1 x > 1 x>1 时, f ′ ( x ) < 0 f'(x) < 0 f(x)<0。根据绝对极值的一阶导数测试法,函数 f f f x = 1 x = 1 x=1 处取得绝对最大值,该值为:

f ( 1 ) = ( 1 ) e − 1 = 1 e ≈ 0.37 f(1) = (1)e^{-1} = \frac{1}{e} \approx 0.37 f(1)=(1)e1=e10.37

指数函数图像

指数函数 f ( x ) = e x f(x) = e^x f(x)=ex 是微积分及其应用中最常出现的函数之一,因此熟悉它的图像和性质非常重要(见图14)。我们总结这些性质,利用这样一个事实:该函数只是定理2中所考虑的指数函数的一个特例,其中底数 b = e > 1 b = e > 1 b=e>1

自然指数函数的性质 指数函数 f ( x ) = e x f(x) = e^x f(x)=ex 是一个递增的连续函数,其定义域是全体实数 R \mathbb{R} R,值域是 ( 0 , ∞ ) (0, \infty) (0,)。因此对于所有的 x x x 来说, e x > 0 e^x > 0 ex>0。同时:
lim ⁡ x → − ∞ e x = 0 以及 lim ⁡ x → ∞ e x = ∞ \lim_{x \to -\infty} e^x = 0 \quad \text{以及} \quad \lim_{x \to \infty} e^x = \infty xlimex=0以及xlimex=
因此,x 轴是函数 ( f(x) = e^x ) 的水平渐近线。

例6 求以下极限: lim ⁡ x → ∞ e 2 x e 2 x + 1 \lim_{x \to \infty} \frac{e^{2x}}{e^{2x} + 1} limxe2x+1e2x

我们将分子和分母同时除以 e 2 x e^{2x} e2x

lim ⁡ x → ∞ e 2 x e 2 x + 1 = lim ⁡ x → ∞ 1 1 + e − 2 x = 1 1 + lim ⁡ x → ∞ e − 2 x \lim_{x \to \infty} \frac{e^{2x}}{e^{2x} + 1} = \lim_{x \to \infty} \frac{1}{1 + e^{-2x}} = \frac{1}{1 + \lim_{x \to \infty} e^{-2x}} xlime2x+1e2x=xlim1+e2x1=1+limxe2x1

由于 e − 2 x e^{-2x} e2x x → ∞ x \to \infty x 时趋近于 0,因此:

lim ⁡ x → ∞ e 2 x e 2 x + 1 = 1 1 + 0 = 1 \lim_{x \to \infty} \frac{e^{2x}}{e^{2x} + 1} = \frac{1}{1 + 0} = 1 xlime2x+1e2x=1+01=1

我们使用了以下事实:当 t = − 2 x → − ∞ t = -2x \to -\infty t=2x 时, lim ⁡ x → ∞ e − 2 x = lim ⁡ t → − ∞ e t = 0 \lim_{x \to \infty} e^{-2x} = \lim_{t \to -\infty} e^t = 0 limxe2x=limtet=0

例7 使用函数 f ( x ) = e 1 / x f(x) = e^{1/x} f(x)=e1/x 的一阶和二阶导数,结合其渐近线,绘制其图像。

注意到函数 f f f 的定义域为 { x ∣ x ≠ 0 } \{ x \mid x \neq 0 \} {xx=0},因此我们检查垂直渐近线,通过计算当 x → 0 + x \to 0^+ x0+ x → 0 − x \to 0^- x0 时的左右极限:

x → 0 + x \to 0^+ x0+ 时,我们知道 t = 1 / x → ∞ t = 1/x \to \infty t=1/x,因此:

lim ⁡ x → 0 + e 1 / x = lim ⁡ t → ∞ e t = ∞ \lim_{x \to 0^+} e^{1/x} = \lim_{t \to \infty} e^t = \infty x0+lime1/x=tlimet=

这表明 x = 0 x = 0 x=0 是一条垂直渐近线。

x → 0 − x \to 0^- x0 时,我们有 t = 1 / x → − ∞ t = 1/x \to -\infty t=1/x,因此:

lim ⁡ x → 0 − e 1 / x = lim ⁡ t → − ∞ e t = 0 \lim_{x \to 0^-} e^{1/x} = \lim_{t \to -\infty} e^t = 0 x0lime1/x=tlimet=0

x → ± ∞ x \to \pm\infty x± 时,我们有 1 / x → 0 1/x \to 0 1/x0,因此:

lim ⁡ x → ± ∞ e 1 / x = e 0 = 1 \lim_{x \to \pm\infty} e^{1/x} = e^0 = 1 x±lime1/x=e0=1

这表明 y = 1 y = 1 y=1 是一条水平渐近线(在左右两侧均为渐近线)。

接下来我们计算导数。根据链式法则:

f ′ ( x ) = − e 1 / x x 2 f'(x) = -\frac{e^{1/x}}{x^2} f(x)=x2e1/x

由于 e 1 / x > 0 e^{1/x} > 0 e1/x>0 x 2 > 0 x^2 > 0 x2>0 对所有 x ≠ 0 x \neq 0 x=0 成立,因此我们有 f ′ ( x ) < 0 f'(x) < 0 f(x)<0 对所有 x ≠ 0 x \neq 0 x=0 成立。于是,函数 f f f ( − ∞ , 0 ) (-\infty, 0) (,0) ( 0 , ∞ ) (0, \infty) (0,) 上递减。没有临界点,因此函数没有局部最大值或最小值。二阶导数为

f ′ ′ ( x ) = − x 2 e 1 / x ( − 1 / x 2 ) − e 1 / x ( 2 x ) x 4 = e 1 / x ( 2 x + 1 ) x 4 f''(x) = \frac{-x^2 e^{1/x}(-1/x^2) - e^{1/x}(2x)}{x^4} = \frac{e^{1/x}(2x + 1)}{x^4} f′′(x)=x4x2e1/x(1/x2)e1/x(2x)=x4e1/x(2x+1)

由于 e 1 / x > 0 e^{1/x} > 0 e1/x>0 x 4 > 0 x^4 > 0 x4>0,我们有 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0 x > − 1 2 ( x ≠ 0 ) x > -\frac{1}{2} (x \neq 0) x>21(x=0),且 f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0 x < − 1 2 x < -\frac{1}{2} x<21。因此,曲线在 ( − ∞ , − 1 2 ) (-\infty, -\frac{1}{2}) (,21) 上向下凹,而在 ( − 1 2 , 0 ) (-\frac{1}{2}, 0) (21,0) ( 0 , ∞ ) (0, \infty) (0,) 上向上凹。拐点为 ( − 1 2 , e − 2 ) (-\frac{1}{2}, e^{-2}) (21,e2)

为了绘制函数 f f f 的图像,我们首先绘制水平渐近线 y = 1 y = 1 y=1(作为虚线),并且将靠近渐近线的曲线部分绘制在初步草图中([图15(a)])。这些部分反映了有关极限的信息,以及 f f f ( − ∞ , 0 ) (-\infty, 0) (,0) ( 0 , ∞ ) (0, \infty) (0,) 上都是递减的事实。请注意,我们已经标明了 f ( x ) → 0 f(x) \to 0 f(x)0 x → 0 − x \to 0^- x0,即使 f ( 0 ) f(0) f(0) 不存在。在图15(b)中,我们通过结合有关凹凸性和拐点的信息来完成草图。在图15©中,我们使用绘图设备检查我们的工作。

在这里插入图片描述

积分

由于指数函数 y = e x y = e^x y=ex 的导数非常简单,它的积分也很简单:

∫ e x   d x = e x + C \int e^x \, dx = e^x + C exdx=ex+C

例8 计算积分 ∫ x 2 e x 3   d x \int x^2 e^{x^3} \, dx x2ex3dx

我们做变量替换 u = x 3 u = x^3 u=x3,因此 d u = 3 x 2   d x du = 3x^2 \, dx du=3x2dx,所以 x 2   d x = 1 3 d u x^2 \, dx = \frac{1}{3} du x2dx=31du,并且:

∫ x 2 e x 3   d x = 1 3 ∫ e u   d u = 1 3 e u + C = 1 3 e x 3 + C \int x^2 e^{x^3} \, dx = \frac{1}{3} \int e^u \, du = \frac{1}{3} e^u + C = \frac{1}{3} e^{x^3} + C x2ex3dx=31eudu=31eu+C=31ex3+C

例9 y = e − 3 x y = e^{-3x} y=e3x 从 0 到 1 之间曲线下的面积。

面积为:

A = ∫ 0 1 e − 3 x   d x = [ − 1 3 e − 3 x ] 0 1 = 1 3 ( 1 − e − 3 ) A = \int_0^1 e^{-3x} \, dx = \left[ -\frac{1}{3} e^{-3x} \right]_0^1 = \frac{1}{3} (1 - e^{-3}) A=01e3xdx=[31e3x]01=31(1e3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值