前言
顺序栈前言:
栈具有记忆作用,对栈的插入与删除操作中,不需要改变栈底指针。
提示:以下是本篇文章正文内容,下面案例可供参考
一、顺序栈的定义
栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。它按照后进先出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来),也就是后进先出(LIFO)或者先进后出。
二、 顺序栈的运算
顺序栈的运算包括入栈(push)、出栈(pop)、取栈顶元素(top)以及判断栈是否为空(isEmpty)。
入栈操作:在顺序栈的末尾添加一个元素。如果栈为空,将新元素作为栈顶元素;如果栈不为空,将新元素添加到栈的末尾,并将栈顶指针下移一位。可以使用数组来实现顺序栈,通过数组的尾部进行元素的插入。
出栈操作:删除顺序栈的最后一个元素。如果栈为空,不能进行出栈操作;如果栈只有一个元素,删除该元素后栈为空。将栈顶指针上移一位,并返回被删除的元素。
取栈顶元素:返回顺序栈的最后一个元素,并不删除。如果栈为空,返回特定值(如-1)表示取不到。
判断栈是否为空:检查顺序栈是否为空,如果为空返回true,否则返回false。
这些基本运算可以在O(1)时间复杂度内完成。
三、 顺序栈的实现
1、栈的初始化
/* 1. 初始化 */
int init(SeqStack *S, int MaxSize)
{
/*申请内存空间*/
S->data = (DataType*)malloc(sizeof(DataType)*MaxSize);
if(!S->data)
{
printf("内存申请错误,初始化失败![10001]\n");
return 10001;
}
S->maxsize = MaxSize;
S->top = -1;
return 0;
}
2、入栈
/* 2. 进(入)栈 */
int push(SeqStack *S, DataType x)
{
/*是否满?*/
if(full(S))
{
printf("栈已满!10002\n");
return 10002;
}
S->top++; /*移动指针*/
S->data[S->top] = x;/*放入数据*/
return 0; /*OK*/
}
3、出栈
/* 3. 出栈 */
int pop(SeqStack *S, DataType *x)
{
/*是否空?*/
if(empty(S))
{
printf("栈为空!10003\n");
return 10003;
}
*x = S->data[S->top]; /*栈顶元素赋值给x*/
S->top--; /*移动栈顶指针*/
return 0;
}
4、取栈顶元素
/* 4. 取栈顶元素 */
int get_top(SeqStack *S, DataType *x)
{
/*是否空?*/
if(empty(S))
{
printf("栈为空!10003\n");
return 10003;
}
*x = S->data[S->top]; /*栈顶元素赋值给x*/
return 0;
}
5、栈是否为空?
/* 5. 栈为空?*/
int empty(SeqStack *S)
{
return (S->top == -1)?1:0;
}
6、栈是否已满?
/* 6. 栈满?*/
int full(SeqStack *S)
{
return (S->top == S->maxsize - 1)?1:0;
}
7、销毁栈
* 7. 销毁*/
int destroy(SeqStack *S)
{
free(S->data);
return 0;
}
8、栈的应用(十进制转二进制、后缀运算)
/*十进制转换为二进制*/
int d_to_b(int d)
{
SeqStack S;
int b;
/*初始化栈*/
init(&S,32);
/*d不为0,余数进栈*/
while(d)
{
push(&S, d % 2);
d /= 2;
}
/*依次出栈*/
while(!empty(&S))
{
pop(&S,&b);
printf("%d", b);
}
/*销毁栈*/
destroy(&S);
}
/*后缀表达式计算*/
int expression()
{
SeqStack S;
int i;
int op1, op2;
int x;
char exp[20]; /*后缀表达式*/
init(&S, 10);
printf("请输入一个后缀表达式(eg. 56+):");
scanf("%s", exp);
for(i=0;i<strlen(exp);i++)
{
switch(exp[i])
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
/*入栈*/
push(&S, exp[i]-48);
break;
case '+':
/*出2个*/
pop(&S, &op1);
pop(&S, &op2);
x = op1 + op2;
push(&S, x);
break;
case '*':
pop(&S, &op1);
pop(&S, &op2);
x = op1 * op2;
push(&S, x);
break;
case '-':
pop(&S, &op1);
pop(&S, &op2);
x = op1 - op2;
push(&S, x);
break;
case '/':
pop(&S, &op1);
pop(&S, &op2);
x = op1 / op2;
push(&S, x);
break;
}
}
pop(&S, &x);
printf("计算结果为:%s = %d\n", exp, x);
destroy(&S);
}
四、完整代码(Demo)
#include <stdio.h>
#include <string.h>
#include "seqstack.h"
#include "welcome.h"
/*十进制转换为二进制*/
int d_to_b(int d);
/*后缀表达式计算*/
int expression();
int main(int argc, char* argv[])
{
SeqStack S;
int i,d,m,n,cmd;
DataType x;
int maxsize;
char yn;
for(i=0;i<strlen(welcome);i++)
{
printf("%c",welcome[i]);
for(m=0;m<1000;m++)
for(n=0;n<1000;n++)
{
;
}
}
do
{
printf("---------顺序栈演示程序-----------\n");
printf(" 1. 初始化\n");
printf(" 2. 入栈\n");
printf(" 3. 出栈\n");
printf(" 4. 查看栈顶元素\n");
printf(" 5. 判断栈是否为空\n");
printf(" 6. 判断栈是否满\n");
printf(" 7. 销毁栈\n");
printf(" 8. 栈的应用\n");
printf(" 9. 帮助\n");
printf("请选择(0~9,0退出):");
scanf("%d", &cmd);
switch(cmd)
{
case 1:
printf("请输入栈的最大存储空间(MaxSize):");
scanf("%d", &maxsize);
if(!init(&S, maxsize))
{
printf("栈已初始化!\n");
}
break;
case 2:
printf("请输入入栈元素:x=");
scanf("%d", &x);
if(!push(&S, x))
{
printf("元素【%d】已入栈!\n", x);
}
break;
case 3:
printf("确定要出栈(出栈后数据不可恢复,y|n,n)?");
flushall();
scanf("%c", &yn);
if(yn == 'y' || yn == 'Y')
{
if(!pop(&S, &x))
{
printf("栈顶元素【%d】已出栈!\n", x);
}
}
break;
case 4:
printf("取栈顶元素:x=【%d】",x);
break;
case 5:
if(empty(&S)){
printf("栈为空\n");
}else{
printf("栈不为空\n");
}
break;
case 6:
if(full(&S)){
printf("栈已满\n");
}else{
printf("栈未满\n");
}
break;
case 7:
destroy(&S); // 销毁栈
printf("栈已销毁");
break;
case 8:
do
{
printf("----------8.栈的应用------------\n");
printf(" 1. 十进制转换为二进制\n");
printf(" 2. 后缀表达式计算\n");
printf(" 0. 返回\n");
printf("请选择:");
scanf("%d", &cmd);
if(cmd == 1)
{
printf("请输入一个十进制数:");
scanf("%d", &d);
printf("二进制为:");
d_to_b(d);
printf("\n");
}
if(cmd == 2)
{
expression();
}
}while(cmd!=0);
cmd = -1;
break;
case 9:
printf("该程序完成了入栈、出栈、取栈顶、判断栈是否为空、销毁栈、栈的扩容等功能!\n");
break;
}
}while(cmd!=0);
return 0;
}
/*十进制转换为二进制*/
int d_to_b(int d)
{
SeqStack S;
int b;
/*初始化栈*/
init(&S,32);
/*d不为0,余数进栈*/
while(d)
{
push(&S, d % 2);
d /= 2;
}
/*依次出栈*/
while(!empty(&S))
{
pop(&S,&b);
printf("%d", b);
}
/*销毁栈*/
destroy(&S);
}
/*后缀表达式计算*/
int expression()
{
SeqStack S;
int i;
int op1, op2;
int x;
char exp[20]; /*后缀表达式*/
init(&S, 10);
printf("请输入一个后缀表达式(eg. 56+):");
scanf("%s", exp);
for(i=0;i<strlen(exp);i++)
{
switch(exp[i])
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
/*入栈*/
push(&S, exp[i]-48);
break;
case '+':
/*出2个*/
pop(&S, &op1);
pop(&S, &op2);
x = op1 + op2;
push(&S, x);
break;
case '*':
pop(&S, &op1);
pop(&S, &op2);
x = op1 * op2;
push(&S, x);
break;
case '-':
pop(&S, &op1);
pop(&S, &op2);
x = op1 - op2;
push(&S, x);
break;
case '/':
pop(&S, &op1);
pop(&S, &op2);
x = op1 / op2;
push(&S, x);
break;
}
}
pop(&S, &x);
printf("计算结果为:%s = %d\n", exp, x);
destroy(&S);
}
2.seqstack.c
/*
seqstack.c
*/
#include "seqstack.h"
/* 1. 初始化 */
int init(SeqStack *S, int MaxSize)
{
/*申请内存空间*/
S->data = (DataType*)malloc(sizeof(DataType)*MaxSize);
if(!S->data)
{
printf("内存申请错误,初始化失败![10001]\n");
return 10001;
}
S->maxsize = MaxSize;
S->top = -1;
return 0;
}
/* 2. 进(入)栈 */
int push(SeqStack *S, DataType x)
{
/*是否满?*/
if(full(S))
{
printf("栈已满!10002\n");
return 10002;
}
S->top++; /*移动指针*/
S->data[S->top] = x;/*放入数据*/
return 0; /*OK*/
}
/* 3. 出栈 */
int pop(SeqStack *S, DataType *x)
{
/*是否空?*/
if(empty(S))
{
printf("栈为空!10003\n");
return 10003;
}
*x = S->data[S->top]; /*栈顶元素赋值给x*/
S->top--; /*移动栈顶指针*/
return 0;
}
/* 4. 取栈顶元素 */
int get_top(SeqStack *S, DataType *x)
{
/*是否空?*/
if(empty(S))
{
printf("栈为空!10003\n");
return 10003;
}
*x = S->data[S->top]; /*栈顶元素赋值给x*/
return 0;
}
/* 5. 栈为空?*/
int empty(SeqStack *S)
{
return (S->top == -1)?1:0;
}
/* 6. 栈满?*/
int full(SeqStack *S)
{
return (S->top == S->maxsize - 1)?1:0;
}
/* 7. 销毁*/
int destroy(SeqStack *S)
{
free(S->data);
return 0;
}
3.seqstack.h
/*
seqstack.h
顺序栈
*/
typedef int DataType;
typedef struct
{
DataType *data; /* 堆空间 */
int maxsize;
int top; /* 栈顶指针 */
}SeqStack;
/* 1. 初始化 */
int init(SeqStack *S, int MaxSize);
/* 2. 进(入)栈 */
int push(SeqStack *S, DataType x);
/* 3. 出栈 */
int pop(SeqStack *S, DataType *x);
/* 4. 取栈顶元素 */
int get_top(SeqStack *S, DataType *x);
/* 5. 栈为空?*/
int empty(SeqStack *S);
/* 6. 栈满?*/
int full(SeqStack *S);
/* 7. 销毁*/
int destroy(SeqStack *S);
4.welcome.h
char welcome[]=(
"/n"
);
五、运行结果截图
总结
顺序栈是一种基于数组实现的后进先出(LIFO)数据结构,具有记忆作用。其主要运算包括入栈(push)、出栈(pop)、取栈顶元素(top)以及判断栈是否为空(isEmpty)。在顺序栈中,元素按照后进先出的原则存储,新元素总是被添加到栈的末尾,而删除操作则总是删除栈顶的元素。由于顺序栈使用数组来存储元素,因此其空间利用率较高,且支持随机访问。然而,由于数组的灵活性较低,顺序栈在插入和删除操作时可能需要移动大量的元素,因此其时间复杂度可能会较高。此外,顺序栈还存在栈溢出的问题,即在某些情况下可能会超出数组的容量限制。为了解决这个问题,可以采取一些措施,如使用动态数组或链表来实现栈,以避免数组的容量限制。