Trae 初体验:VS Code要被替代了?强推Trae!

当我第一次打开Trae,ByteDance推出的AI原生IDE,我惊呆了:这界面也太美了吧,像JetBrains Fleet和VS Code的完美融合!更夸张的是,它免费提供Claude 3.7 Sonnet和GPT-4.1,还支持MCP协议,让AI直接调用GitHub、Slack,简直是开发者的“梦中情IDE”!X上@wesbos直呼“TikTok fork了VS Code,还干得这么漂亮?”我的初体验证实:Trae不仅好看,还好用,VS Code的王座真要晃了?来,跟我一起解锁Trae的魔法

Trae的AI功能有多强?它真能取代VS Code吗?初次使用Trae是什么体验,值不值得强推?

你是否厌倦了VSCode每次启动的卡顿、插件冲突、臃肿体验?当我第一次使用Trae时,感觉就像打开了新世界的大门。这款AI驱动的极简编程环境,真的有机会颠覆我们熟悉的VSCode?

观点与案例结合

Trae 最吸引人的地方,是它对**“AI原生”开发体验**的重新定义:

  • ✅ 内置代码补全 & 意图识别

  • ✅ 类 Copilot 的智能对话窗

  • ✅ 零配置,极致轻量,打开即用

  • ✅ 本地模型兼容,支持 Claude、GPT、DeepSeek 等

真实体验案例:

我用Trae写了一个中型Flask项目,整个过程几乎没查过文档,AI直接提示模块调用、修正语法错误,甚至帮我查SQL语句写法。相比VSCode+插件,Trae 速度更快,干扰更少,效率翻倍。

Trae基于VS Code重构,集成MCP协议和顶级AI模型,提供了Builder和Chat两大模式,覆盖从原型开发到实时调试的场景。以下是我的初体验,结合实战案例,分享Trae的亮点与不足。

1. 安装与设置:丝滑开局

体验:从Trae官网下载macOS客户端,安装仅需2分钟。登录支持GitHub账号,自动导入VS Code插件和主题,零门槛迁移。中文界面友好,文档详尽,连新手都能秒上手。


代码(导入VS Code设置):

# Trae自动提示导入VS Code配置
trae --import-vscode-settings ~/.vscode

案例:我导入VS Code的Dracula主题和Python扩展,Trae秒速同步,界面熟悉感满分!

2. Builder模式:一键生成项目

体验:Builder模式是Trae的杀手锏,只需自然语言描述需求,Trae就能生成完整项目结构和代码。
代码(生成Django CRM):

# 在Builder模式输入:
"Create a Django CRM with user authentication and sales tracking"

# Trae自动生成:
# project/
# ├── manage.py
# ├── crm/
# │   ├── models.py (User, Sale models)
# │   ├── views.py (Login, Dashboard)
# │   ├── urls.py
# └── requirements.txt (django, django-filter)

案例:我用Builder生成一个Django CRM,3分钟完成项目骨架,包含模型、视图和依赖,比手写快10倍!X用户@imxiaohu的演示也提到,只用鼠标点点就搞定项目,效率爆表。

3. Chat模式:实时调试神器

体验:Chat模式支持代码上下文分析, inline 建议和Side Chat让我边写边问,调试效率翻倍。
代码(修复Django错误):

# 原始代码有错
from django import models  # 应为django.db

# Chat模式提示:
"Replace 'django' with 'django.db' in models import"
# 修正后:
from django.db import models

案例:我在CRM项目中漏写依赖,Trae自动建议添加django-tables2并修复INSTALLED_APPS,省去翻文档的麻烦。

4. MCP支持:AI与工具的超级连接

体验:Trae通过MCP协议调用外部工具(如GitHub、Supabase),实现自动化工作流。
代码(MCP自动提交代码):

{
  "mcp": {
    "service": "github",
    "action": "commit",
    "params": {
      "repo": "my-crm",
      "message": "Add CRM models"
    }
  }
}

案例:我用MCP将CRM代码推送到GitHub,Trae自动生成commit message,省去终端操作,X上@vista8称MCP的“智能体”功能让复杂任务一气呵成。

5. 性能与不足:免费的代价?

亮点:Trae对中小型项目(<50k行)响应快,推理时间<0.2秒。UI流畅,占用内存仅1.5GB,比VS Code+Copilot轻量。
不足

  • 大型代码库(>100k行)偶尔卡顿,Builder模式生成复杂逻辑时需多次提示。

  • 依赖云端API,离线功能缺失,X用户提到排队问题影响长时使用。

  • 数据隐私担忧,因ByteDance背景,敏感项目需谨慎。

案例:我测试一个10万行前端项目,Trae在多文件编辑时略慢,但重启后恢复正常。相比Cursor的$20/月,Trae免费且功能接近,性价比无敌。

目前AI工具层出不穷,但开发工具始终未能彻底变革。Trae 开启了新一代“对话式编程”,让 AI 成为第一开发助手,而不是插件里的装饰品

在大模型普及的今天,这种工具将改变我们“写代码”的范式。

 Trae 任重道远

坦诚地说,目前 Builder 的效果还是适合解决单个问题,或者复杂度中下的项目,对于复杂度高需要调试的场景仍然是不足的,比如一些体验不好的点:

  • 解答思路不对的时候,再怎么问可能也是错的;
  •  单次问答的时长过长,繁重的意图识别和上下文检索除了提高了问答的精准度外,也提升了大量的时间;
  •  稳定性仍需提高,还是会岀现不少网络异常、API 不稳定等原因;
  •  自校验机制不够完善,有一些内容无法自搜集,导致生成的结果不能自治;

对于这些不好的点,我们也可以通过一些另类的手段对功能进行强化:

  • 由人为控制一定架构,而非完全放权给 AI;
  •  降低每次 Builder 的粒度,将大问题拆成 n 个小问题;
  •  当一个类型的问题,Builder 多次生成异常的时候,需要考虑换个思路或者提供更多具体方向或者信息进行强化;

同时 Trae 团队也在持续的优化中,相信在不久的将来也可以有更好的效果呈现出来。

总结

Trae 是一个信号,它意味着“代码不再靠敲,而是靠说、靠想”。在它的帮助下,开发者能真正聚焦在业务逻辑和创意实现。

Trae初体验让我惊叹:Builder模式一键建项目,Chat模式实时救急,MCP让AI变“全能选手”,免费+中文友好的特性更是锦上添花。虽然性能和隐私有待优化,但Trae已足够威胁VS Code的地位。它不仅是工具,更是AI时代编码哲学的体现——让开发者从繁琐中解放,专注创造。强推Trae

未来的开发者,不是写代码的人,而是和AI协作解决问题的人。Trae,就是你与未来对话的第一个窗口。

Trae在手,编码如流——AI加持,VS Code颤抖!

 

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明,该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值