SSA-Net:基于半监督小样本学习的 covid-19 肺部感染区域分割的空间自我注意网络

声明

不定期更新自己精度论文,通俗易懂,初级小白也可以理解

涉及范围:深度学习方向,包括 CV、NLP、Data Fusion、Digital Twin

论文标题:

SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning

论文链接:https://doi.org/10.1016/j.media.2022.102459

论文代码:

发表时间:2022年4月

创新点

1、提出了一种新的 covid-19 肺部病变区域分割网络(SSA-Net)

2、提出了一种基于重新加权损失和选择高置信度预测值的半监督迭代分割框架

Abstract

冠状病毒病 (新型冠状病毒肺炎) 在 2019 年末爆发,并导致了持续的全球大流行。新型冠状病毒肺炎患者的胸部计算机断层扫描 (CT) 扫描中分割肺炎感染对于准确诊断和定量分析具有重要意义。可以开发基于深度学习的方法来进行自动分割,并为加强及时检疫和医疗提供了巨大的潜力。不幸的是,由于新型冠状病毒肺炎大流行的紧迫性,用于深度神经网络训练的CT数据集的系统收集非常困难,尤其是对多类别感染的高质量注释是有限的。此外,由于不规则的形状和模糊的边界,从CT 切片中分割感染区域仍然是一个挑战。

为了解决这些问题,我们提出了一种新型新型冠状病毒肺炎肺炎病变分割网络,称为空间自我注意网络 (SSA-Net),用于从胸部CT图像中自动识别感染区域。在我们的SSA-Net中,利用自我注意机制通过从更深层提取有用的上下文信息而无需额外的训练时间来扩展接受领域并增强表示学习,并引入空间卷积以增强网络并加速训练收敛。此外,为了缓解标记多类数据的不准确性和训练数据的长尾分布,我们提出了一种基于重新加权损失和选择高置信度预测值的半监督少镜头迭代分割框架。它可以通过少量标记的图像数据对不同类型的感染进行准确分类。

实验结果表明,SSA-Net 的性能优于最新的医学图像分割网络,并提供了可临床解释的显着性图,可用于新型冠状病毒肺炎诊断和患者分诊。同时,我们的半监督迭代分割模型可以提高小且不平衡训练集的学习能力,并可以获得更高的性能。

Method

如上图所示,所提出的 SSA-Net 由三个主要部分组成: 具有自我注意学习的特征编码器,具有空间卷积的特征再提取器和特征解码器。

首先,CT 图像输入进特征编码器中,它由四个用于下采样操作的残差块组成,这与 Resnet34 的编码器相同;

并且,为了加强表示,在每个残差块之后引入了一个自我注意学习模块;

然后,先前层的注意图可以从连续层的注意图中提取有用的上下文信息,而在较低层学习的更好的表示又将有利于更深层层。

Self-attention learing

本文中使用的注意力图是基于激活的注意力图的。

具体来说,attention map 就是将 channel、height 和 width 的三维特征映射成一个 height 和 width的二维特征;

通过考虑每个通道的激活特征值来确定空间特征的分布,每个元素对最终输出的重要性取决于它在图中的绝对值;

因此,注意力图可以由一个映射函数生成,该函数旨在计算通道维度上所有元素的绝对值的统计信息。

---------------------------------------------------------------------------------------------------------------------------------

Feature re-extractor

特征提取器是一个新的空间卷积模块,处于编码器-解码器网络的瓶颈。通过使用顺序消息传递方案,该模块旨在提取特征图中行和列之间的更多空间信息并加强训练。

空间卷积模块

空间卷积模块,通过大内核的通道级卷积获得特征图。

具体地,从特征编码器获得的特征图是尺寸为 C × H × W 的 3D 张量 T,其中 C,H 和 W 分别是通道的数量,高度和宽度。

如上图所示,以 H 维为例,即从上到下传递消息,将特征图切成 H 片。k 表示内核宽度。它表示下一个切片中的一个像素可以从当前切片中的 k × c 像素接收消息;

第一个切片由 1 × k × c 卷积层卷积,并将输出添加到第二个切片,然后将新的输出馈送到下一个 1 × k × c 卷积;

此过程被迭代 H 次以获得最终输出。上述操作在四个方向上进行,包括向下、向上、向左和向右,以完成空间信息的传输。

---------------------------------------------------------------------------------------------------------------------------------

Feature decoder

特征解码器旨在构造来自特征编码器和特征提取器的分割结果。通过跳过连接,特征解码器可以从编码器获得更多细节,以弥补池化和卷积操作后的信息丢失。每个解码器层包括 1 × 1 卷积,3 × 3转置卷积和 1 × 1 卷积。基于跳过连接和解码器层的串联,输出具有与输入相同的大小。最后,采用 Sigmoid 函数作为激活函数来生成分割结果。

---------------------------------------------------------------------------------------------------------------------------------

Semi-supervised few-shot learning(半监督的小样本学习)

由于 COVID-19 数据集的类不平衡和有限的标记数据,作者提出了一个半监督的少镜头学习框架,该框架由两个主要部分组成: 肺区域分割多类感染分割,如下图所示

 Lung region segmentation(肺部区域分割)

肺区域分割是新型冠状病毒肺炎病变分割的第一步。

首先,使用预训练好的 U-Net 模型来分割肺区域;

然后,所有未标记的 CT 切片被预先训练的 U-Net 分割,以获得肺的所有边界。

Multi-class infection segmentation(多类别感染分割)

作者提出的一种半监督的小样本学习策略中还引入了重新加权模块信任模块,以平衡不同病变类别的分布并获得更可靠的伪标签。

此学习框架基于随机抽样策略,并使用未标记的数据逐步扩展训练数据集并生成伪标签。每个 CT切片都与由肺区域分割生成的肺罩连接,作为 SSA-Net 模型的输入。

训练时,利用重新加权模块,该模块是基于每个类的像素数的类重新平衡策略。通过选择高置信度值,可以从信任模块获得更可靠的伪标签。

Re-weighting module(重新加权模块) 与 Trust module(信任模块)本文,并没有详细介绍,本质上此两个模块属于数学推导过程,重新加权模块是重新定义了一种损失函数,来平衡权重;信任模块也是引入了一个量值,来选择不同区间的置信度的过程,想跟深入了解,请看原文。

Experiments

实验目标:不同结构分割结果

实验目标:不同网络对单类 COVID-19 肺炎病变分割的定量评估

实验结果:SSA-Net 大部分指标优秀

 

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 基于tent混沌映射改进的麻雀算法SSA优化BP神经网络(Tent-SSA-BP)用于回归预测是一种综合利用混沌映射、麻雀算法、离散谱分析和BP神经网络的优化算法。下面将介绍其基本原理和优势。 首先,该算法利用tent混沌映射生成一系列随机数作为麻雀算法的搜索初值。麻雀算法是一种模拟麻雀觅食行为的优化算法,通过一系列的觅食和迁徙操作来搜索最优解。在Tent-SSA-BP中,麻雀算法被用来寻找BP神经网络的最优权重和偏置值。 其次,Tent-SSA-BP还利用离散谱分析对待优化的BP神经网络进行频域特征提取。离散谱分析将输入数据转换为频域信号,可以提取数据的周期性和趋势信息,有助于优化算法更准确地找到BP网络的最优解。 最后,Tent-SSA-BP将麻雀算法的搜索结果作为BP神经网络的初始值,通过反向传播算法迭代调整网络的权重和偏置值,以实现回归预测任务。 该算法具有以下优势: 1. 麻雀算法和离散谱分析相结合,可以更全面地搜索优化空间,提高算法的全局搜索能力,避免陷入局部最优解。 2. 利用tent混沌映射生成的随机数作为麻雀算法的初值,增加了搜索过程的随机性,有助于算法的多样性和全局收敛性。 3. 离散谱分析可以提取数据的周期性和趋势信息,提高了优化算法的精度。 4. 通过反向传播算法对网络进行迭代优化,可以进一步提高网络的拟合能力。 综上所述,基于tent混沌映射改进的麻雀算法SSA优化BP神经网络(Tent-SSA-BP)是一种有效的回归预测算法,具有良好的全局搜索能力和精度。 ### 回答2: 基于Tent混沌映射改进的麻雀算法(Tent-SSA-BP)主要用于回归预测问题中的优化BP神经网络。BP神经网络是一种常用的机器学习算法,通过反向传播算法来调整网络的权值和阈值,以达到预测目标的目的。 Tent混沌映射是一种非线性动力系统,可用于生成随机数序列。而麻雀算法是一种优化算法,灵感来源于麻雀鸟群的集体行为,在搜索空间中寻找最优解。 Tent-SSA-BP算法将Tent混沌映射与麻雀算法相结合,用于优化BP神经网络的训练过程。具体步骤如下: 首先,根据优化问题的要求,建立BP神经网络模型并初始化权值和阈值。 然后,利用Tent混沌映射生成随机数序列作为麻雀算法的初始位置。 接下来,根据麻雀算法的原理,通过计算每个麻雀的适应度函数值来评估其位置的优劣。适应度函数值可以通过计算实际输出与期望输出之间的差距来衡量。 然后,根据适应度函数值,更新每个麻雀的位置。在更新过程中,可以利用Tent混沌映射生成新的位置。 最后,根据更新后的麻雀位置,调整BP神经网络的权值和阈值,以改善网络的性能和预测准确度。 通过多次迭代,Tent-SSA-BP算法可以逐渐优化BP神经网络,提高回归预测的准确度。 总之,基于Tent混沌映射改进的麻雀算法(Tent-SSA-BP)是一种用于优化BP神经网络的回归预测方法。它通过结合Tent混沌映射和麻雀算法,可以改善神经网络的性能,提高回归预测的精度。 ### 回答3: 基于tent混沌映射改进的麻雀算法SSA-优化BP神经网络(Tent-SSA-BP)是一种用于回归预测的算法。SSA是扩散谱分析(Singular Spectrum Analysis)的缩写,它是一种基于时间序列数据的分析方法。BP神经网络是一种常用的人工神经网络,用于模式识别和回归预测。 Tent混沌映射是一种非线性动力学系统,它的特点是输入值在一定范围内发生不可预测的变化。基于tent混沌映射改进的麻雀算法是一种模拟麻雀觅食行为的优化算法,它的特点是具有较强的全局搜索能力和快速收敛速度。 在Tent-SSA-BP算法中,首先通过SSA分析原始时间序列数据,将其分解为多个成分。然后,利用优化算法SSA-麻雀算法对每个成分进行优化。这样,可以获得每个成分的最优权重和偏置。接下来,将这些最优权重和偏置作为初始化参数,使用BP神经网络进行训练。通过不断迭代,更新权重和偏置,直到达到预定的收敛条件。 相比于传统的BP神经网络,Tent-SSA-BP算法在初始化参数方面更加合理和准确,能够更快地收敛。同时,根据tent混沌映射的特性,Tent-SSA-BP算法能够更好地探索搜索空间,提高了全局搜索能力,有助于找到更优的局部最小值。 总的来说,基于tent混沌映射改进的麻雀算法SSA-优化BP神经网络(Tent-SSA-BP)回归预测是一种综合利用了SSA分解、Tent混沌映射和BP神经网络的优化算法。它通过分解分析时间序列数据、优化权重和偏置以及训练神经网络,能够提高预测的准确性和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来自γ星的赛亚人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值