解决离线服务器无法加载HuggingFaceEmbeddings向量化模型的问题

由于服务器是离线的,因此我先在本地到huggingface官网下载模型text2vec,然后上传到服务器上运行,报错:

(MaxRetryError('HTTPSConnectionPool(host=\'huggingface.co\', port=443): Max retries exceeded with url: /api/models/sentence-transformers/text2vec-base-chinese/revision/main (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0x7f12ebf56350>: Failed to resolve \'huggingface.co\' ([Errno -3] Temporary failure in name resolution)"))'), '(Request ID: d787098f-eabd-4f11-8150-623bd99a55e2)')

An error happened while trying to locate the files on the Hub and we cannot find the appropriate snapshot folder for the specified revision on the local disk. Please check your internet connection and try again.

huggingface_hub.utils._errors.LocalEntryNotFoundError: Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input.
 

HuggingFaceEmbeddings它识别不了这个路径下的文件,因此我将cache_folder的值换成'shibing624/text2vec-base-chinese'依然报相同的错误。

然后我去官网看如何调用这个模型,选择了下面这种方式:

再次报错:

 db = store_chroma(documents,embeddings)

AttributeError: 'BertModel' object has no attribute 'embed_documents'

也就是说加载完向量化模型后,我初始化了Chroma向量数据库,然后对传入的doc文档数据进行向量化,它会提示找不到embed_documents这个属性。本身BertModel是没有这个属性的,但是Chroma却需要调用这个属性来实现文档向量化(通过HuggingFaceEmbeddings来加载模型就不会报错,但是离线服务器上用不了)。因此,自己写一个embed_documents来实现就好啦,如下所示:

先在load_embedding_mode里面添加一个方法embedding_function,然后再建立一个类:

最后再调用这个类,就能正常对文档进行向量化和本地持久化了。

embedding_function = EmbeddingFunction(load_embedding_mode())
db = Chroma(embedding_function=embedding_function, persist_directory='VectorStore')

<think>好的,用户想知道如何在单机环境下进行大模型的私有化部署和搭建。首先,我需要理解用户的具体需求。单机环境可能指的是只有一台服务器或台式机,可能具备一个或多个GPU,或者仅使用CPU。私有化部署通常意味着用户希望将模型部署在本地,确保数据安全和隐私,不依赖外部云服务。 接下来,我需要回顾相关的引用内容,看看是否有直接相关的信息。引用[2]提到了一键Docker部署,支持单机、量化、Mac、单GPU和多GPU部署,还解决模型下载的问题。引用[4]提到用户有Paddle和PyTorch环境,可能对深度学习框架比较熟悉,并且在开发基于LLM的RAG应用。引用[5]展示了如何用ChromaDB和HuggingFace的嵌入模型,这可能涉及向量数据库的部署,属于应用层的一部分。 用户的问题涉及大模型私有化部署,可能需要涵盖环境准备、模型选择、部署方式、验证测试以及应用集成等方面。首先,环境准备需要考虑硬件资源,比如GPU是否可用,内存和存储是否足够。然后,模型选择方面,可能需要推荐一些适合单机部署的模型,如ChatGLM3、Llama等,这些模型可能有量化版本,适合资源有限的单机环境。 部署方式方面,Docker容器化部署是一个高效的选择,可以避免环境配置的麻烦。引用[2]中的Docker方案可以简化部署流程,用户只需调整参数即可适配不同硬件。此外,直接使用框架部署,比如PyTorch或PaddlePaddle,也是一个选项,但可能需要用户自己处理依赖和环境配置。 验证和测试部分需要确保模型能够正常运行,可能包括简单的推理测试,如输入文本生成响应。应用集成可能需要结合LangChain等工具,构建RAG应用,如引用[5]中的ChromaDB向量数据库,用于存储和检索文档。 另外,需要注意模型下载的问题,国内用户可能面临下载缓慢的情况,引用[2]提供了解决方案,比如使用镜像源或离线包。同时,硬件资源不足的情况下,量化技术(如4-bit量化)可以降低模型的内存占用,这对单机部署尤为重要。 可能还需要考虑安全性和后续维护,比如如何更新模型、监控服务状态等。不过用户当前的问题主要集中在搭建和部署,这些高级管理可能暂时不需要详细展开。 总结起来,回答的结构应该分步骤进行,从环境准备到模型选择、部署方式、验证测试、应用集成,再到注意事项。每个步骤需要结合引用中的相关信息,特别是Docker部署和量化技术,以及模型下载的解决方案。同时,用户提到在做RAG应用,可能需要强调与LangChain和向量数据库的集成,如引用[5]中的示例。 最后,生成相关问题时要围绕大模型部署的扩展问题,比如性能优化、安全性、硬件不足的解决方法等,帮助用户进一步探索。</think>### 大模型单机私有化部署方案 #### 1. **环境准备** - **硬件要求**: - GPU环境:推荐至少16GB显存(如NVIDIA RTX 3090/4090),支持FP16/INT8量化加速[^2] - CPU环境:需支持AVX指令集,内存建议32GB以上(适用于小规模模型或量化版本) - **软件依赖**: - 安装Docker(推荐使用官方镜像简化环境配置)[^2] - 深度学习框架:PyTorch/PaddlePaddle(根据模型需求选择)[^4] - 模型管理工具:Hugging Face Transformers、LangChain(用于RAG应用集成)[^5] #### 2. **模型选择与下载** - **推荐模型**: - 轻量化模型:ChatGLM3-6B(支持中英文,适合单机部署) - 开源模型:Llama-2-7B、Falcon-7B(需注意许可证限制) - 量化版本:使用4-bit量化技术降低显存占用(如GPTQ量化)[^2] - **下载方式**: - 通过Hugging Face Hub直接下载(需配置代理或使用国内镜像源) - 离线包分发(适用于无法连接外网的环境)[^2] #### 3. **部署方式** - **Docker一键部署**(推荐): ```bash # 拉取预配置镜像(包含模型和依赖) docker pull [镜像名称]:latest # 启动容器(示例为单GPU) docker run -it --gpus all -p 7860:7860 -v /path/to/model:/app/model [镜像名称] ``` 通过修改`--gpus`参数适配不同硬件环境[^2] - **手动框架部署**(PyTorch示例): ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b") response, history = model.chat(tokenizer, "你好", history=[]) ``` 需自行解决CUDA/cuDNN版本兼容问题[^4] #### 4. **验证与测试** - **基础功能验证**: ```python import paddle # 或 torch paddle.utils.run_check() # 验证框架环境[^4] ``` - **模型推理测试**: ```python input_text = "解释量子计算" outputs = model.generate(input_text, max_length=100) print(outputs) ``` #### 5. **应用集成** - **RAG应用示例**(结合LangChain): ```python from langchain_community.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings # 加载本地向量数据库 embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-zh-v1.5") vectorstore = Chroma.from_documents(docs, embeddings, persist_directory="./rag_db")[^5] ``` #### 6. **注意事项** - **显存优化**: - 使用`accelerate`库实现模型并行 - 启用`fp16`混合精度训练/推理 - **安全加固**: - 通过防火墙限制外部访问端口 - 启用HTTPS加密API通信 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值