随机信号分析与处理1

一、绪论

一个电子设备的性能好坏唯一标准:能否有效提取我们想要的信息并做出相关控制
或者说:尽可能保留有用信号的能量,去除无用信号的能量。

信号分类(确知程度):
在这里插入图片描述

信号处理的目的:

  • 去伪存真去除信号中冗余的和次要的成分,包括不仅没有任何意义反而会带来干扰的噪音。
  • 特征抽取把信号变成易于进行分析和识别的形式
  • 编码解码把信号变成易于传输、交换与存储的形式(编码),或从编码信号中恢复出原始信号(解码)

平滑,滤波和预测区别:
x ( t ) = s ( t ) + n ( t ) − − > 滤波器 − − > y ( t ) = s ( t + α ) x(t)=s(t)+n(t)-->滤波器-->y(t)=s(t+\alpha) x(t)=s(t)+n(t)>滤波器>y(t)=s(t+α)
α > 0 \alpha>0 α>0滤波器超前时刻输出,滤波器完成作用是对输入信
号进行预测
α = 0 \alpha=0 α=0滤波器就是输出同时刻的输入信号,滤波器完成作用是滤除噪声而保留有用信号:
α < 0 \alpha<0 α<0滤波器滞后 α \alpha α时刻输出,滤波器完成作用是对输入信
号进行平滑。

二、随机信号处理基础

一般来说,信号的频谱是分布在整个频率轴 ( − ∞ ⩽ w ⩽ ∞ ) ( - \infty \leqslant w \leqslant \infty ) (w)上的,尤其是持续时间有限的信号必定如此。

高频限带信号是指信号频谱主要局限于某一频率 f ± f 0 f \pm {f_0} f±f0附近
的信号,可表示为 s ( t ) = a s ( t ) cos ⁡ [ ω 0 t + φ s ( t ) ] s(t) = {a_s}(t)\cos [{\omega _0}t + {\varphi _s}(t)] s(t)=as(t)cos[ω0t+φs(t)]
a s ( t ) {a_s}(t) as(t)为限带信号的幅度调制波
φ s ( t ) {\varphi _s}(t) φs(t)为限带信号的相位调制波
在一般情况下,它们都是时间的函数。在信息传输中,就用这两部分来携带信息。

宽带信号 Δ f ⩾ 0.05 f 0 \Delta f \geqslant 0.05{f_0} Δf0.05f0
宽带信号系统抗干扰性能强,信息量大

超宽带信号 Δ f ⩾ 0.2 f 0 \Delta f \geqslant 0.2{f_0} Δf0.2f0
探底雷达,冲击雷达

零中频处理技术
两个正交视频信号,保留幅度和相位信息
在这里插入图片描述

希尔波特变换:
$\mathop s\limits^ \wedge (t) = \frac{1}{\pi }\int_{ - \infty }^\infty {\frac{{s(\tau)}}{{t - \tau }}} d\tau $
s ( t ) = − 1 π ∫ − ∞ ∞ s ∧ ( τ ) t − τ d τ s(t) = - \frac{1}{\pi }\int_{ - \infty }^\infty {\frac{{\mathop s\limits^ \wedge (\tau )}}{{t - \tau }}} d\tau s(t)=π1tτs(τ)dτ
希尔伯特变换为实函数 s ( t ) s(t) s(t) s ∧ ( t ) \mathop s\limits^ \wedge (t) s(t)之间的一种线性变换
希尔伯特正变换在整个正频率内相当于一个滞后90°的移相器
在这里插入图片描述
在这里插入图片描述

高斯分布:
p ( x ) = 1 2 π σ e − ( x − m X ) 2 2 σ 2 p(x) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{ - \frac{{{{(x - {m_X})}^2}}}{{2{\sigma ^2}}}}} p(x)=2π σ1e2σ2(xmX)2
标准高斯分布: σ = 1 , m X = 0 \sigma = 1,{m_X} = 0 σ=1,mX=0

二维概率密度函数
X和Y统计独立:当 γ = 0 \gamma = 0 γ=0时,有 p 2 = p ( x ) p ( y ) {p_2} = p(x)p(y) p2=p(x)p(y),此时联合的概率密度函数为单独两个一维正态概率密度之积,称二维随机变量X和Y是两个相互独立的随机变量。n维随机变量统计独立同理

方差的含义:反映了随机变量偏离均值的程度,随机变量偏离均值的误差总(平均)功率
D ( X ) = E ( X 2 ) − E 2 ( X ) D(X) = E({X^2}) - {E^2}(X) D(X)=E(X2)E2(X),方差=平均功率-均值平方

k阶原点矩 m k m_k mk,k阶中心距 C k C_k Ck
(i+j)阶混合矩 m i j {m_{ij}} mij,(i+j)阶混合中心矩 C i j {C_{ij}} Cij
如果 E ( X Y ) = 0 E(XY)=0 E(XY)=0,则称随机变量X和Y是正交的。

  • 相关系数 ∣ γ ∣ = 1 \left| \gamma \right| = 1 γ=1时,说明随机变量X和Y之间呈线性关
    系。或称X和Y依概率线性相关
  • ∣ γ ∣ < 1 \left| \gamma \right| < 1 γ<1时,说明X和Y以一定概率大小相关。

随机变量的变换

Y = g ( X ) − − > 反函数 X = h ( Y ) Y=g(X)-->反函数X=h(Y) Y=g(X)>反函数X=h(Y)
X落在(x+dx)很小区间内概率=Y落在(y+dy)很小区间内概率,即 p ( x ) d x = p ( y ) d y − > p ( y ) = p ( x ) d x d y − > p ( y ) = ∣ d x d y ∣ p [ h ( y ) ] p(x)dx=p(y)dy->p(y) = \frac{{p(x)dx}}{{dy}}->p(y) = \left| {\frac{{dx}}{{dy}}} \right|p[h(y)] p(x)dx=p(y)dy>p(y)=dyp(x)dx>p(y)= dydx p[h(y)]

若是多值变换Y落在(y+dy)很小区间内概率=X落在很小区间 ( x 1 + d x 1 ) , ( x 2 + d x 2 ) (x_1+dx_1),(x_2+dx_2) (x1+dx1),(x2+dx2),…内概率和

推广:如果n维随机变量(X1,2,…,Xn)和(Y1,Y2,…,Yn)之间是单值变换关系,则多维随机变量的变换关系为
p n ( y 1 , y 2 . . . y n ) = p n ( x 1 , x 2 . . . x n ) ∣ ∂ ( x 1 , x 2 . . . x n ) ∂ ( y 1 , y 2 . . . y n ) ∣ {p_n}({y_1},{y_2}...{y_n}) = {p_n}({x_1},{x_2}...{x_n})\left| {\frac{{\partial ({x_1},{x_2}...{x_n})}}{{\partial ({y_1},{y_2}...{y_n})}}} \right| pn(y1,y2...yn)=pn(x1,x2...xn) (y1,y2...yn)(x1,x2...xn)
雅可比行列式: J = ∂ ( x 1 , x 2 . . . x n ) ∂ ( y 1 , y 2 . . . y n ) J = \frac{{\partial ({x_1},{x_2}...{x_n})}}{{\partial ({y_1},{y_2}...{y_n})}} J=(y1,y2...yn)(x1,x2...xn)

两个随机变量互相独立,其和的概率等于两个随机变量概率的卷积。

特征函数

${\Phi X}(\omega ) = E[{e^{j\omega X}}] = \int{ - \infty }^\infty {{e^{jwx}}p(x)dx} $
维纳辛钦定理:特征函数与概率密度函数构成一对傅立叶变换。
p ( x ) = 1 2 π ∫ − ∞ ∞ e − j w x Φ ( w ) d w p(x) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {{e^{ - jwx}}\Phi (w)} dw p(x)=2π1ejwxΦ(w)dw

性质:

  1. ∣ Φ X ( ω ) ∣ ⩽ ∣ Φ X ( 0 ) ∣ = 1 \left| {{\Phi _X}(\omega )} \right| \leqslant \left| {{\Phi _X}(0)} \right| = 1 ΦX(ω)ΦX(0)=1总是存在
  2. 对于随机变量X,如果存在以下线性变换
    Y=aX+b,a,b为常数,
    则有 Φ Y ( ω ) = Φ X ( a ω ) e j ω b {\Phi _Y}(\omega ) = {\Phi _X}(a\omega ){e^{j\omega b}} ΦY(ω)=ΦX()ejωb
  3. 若随机变量 X 1 , X 2 X_1,X_2 X1,X2统计独立
    在这里插入图片描述
    均值中心极限定理:
    不管什么分布,样本均值(样本数为N)服从正态分布,方差为原方差的1/N。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值