随机信号分析与处理2

随机过程:

在这里插入图片描述

随机过程和随机变量的关系
n个时刻 t 1 , t 2 , . . . , t n t_1,t_2,...,t_n t1,t2,...,tn上对随机过程X(t)诸样本进行均匀采样 ↓ \downarrow
在任意时刻 t k t_k tk,采样结果为 x 1 ( t k ) , x 2 ( t k ) , . . . , x n ( t k ) x_1(t_k),x_2(t_k),...,x_n(t_k) x1(tk),x2(tk),...,xn(tk)这样,由各样本函数在 t = t k t=t_k t=tk时刻的诸采样值便构成一个随机变量
X k = X ( t k ) X_k=X(t_k) Xk=X(tk)
↓ \downarrow
t = t 1 , t 2 , . . . , t n t=t_1,t_2,...,t_n t=t1,t2,...,tn各时刻的诸采样值便构成n个随机变量 X 1 = X ( t 1 ) X_1=X(t_1) X1=X(t1), X 2 = X ( t 2 ) X_2=X(t_2) X2=X(t2),…, X n = X ( t n ) X_n=X(t_n) Xn=X(tn)
一个随机过程是一个随机试验所产生的随机变量依时序组合得到的序列。

两个随机变量之间的联合分布函数为
F 2 ( x 1 , x 2 ; t 1 , t 2 ) {F_2}({x_1},{x_2};{t_1},{t_2}) F2(x1,x2;t1,t2)

注意:把 t 1 t_1 t1改为t,上式则表示随机过程Y(t)的分布。解这个题的关键是要注意在 t t t= t 1 t_1 t1时刻,Y( t 1 t_1 t1)是一个随机变量,最终归结为随机变量的变换问题。

‍# 随机过程的数字特征
在这里插入图片描述

  • 均值 m x ( t ) m_x(t) mx(t)仅仅描述了随机过程诸样本函数在其上下起伏的趋势。

  • 方差说明诸样本函数或随机过程偏离均值的程度。(噪声功率)

  • 自相关函数和自协方差函数描述了随机过程在两个不同时刻的值与值之间的依赖程度。
    随机过程X(t)的两个不同时刻取样值之间统计独立、不相关和正交

    1. 如果 p 2 ( x 1 , x 2 ; t 1 , t 2 ) = p ( x 1 ; t 1 ) p ( x 2 ; t 2 ) {p_2}({x_1},{x_2};{t_1},{t_2}) = p({x_1};{t_1})p({x_2};{t_2}) p2(x1,x2;t1,t2)=p(x1;t1)p(x2;t2),则称随机过程 X ( t ) X(t) X(t) t 1 t_1 t1and t 2 t_2 t2时刻统计独立
    2. 如果 R x ( t 1 , t 2 ) = 0 {R_x}\left( {{t_1},{t_2}} \right) = 0 Rx(t1,t2)=0,则称随机过程X(t)在 t 1 t_1 t1 t 2 t_2 t2时刻相互正交。
    3. 如果 C x ( t 1 , t 2 ) = 0 {C_x}\left( {{t_1},{t_2}} \right) = 0 Cx(t1,t2)=0,则称随机过程X(t)在 t 1 t_1 t1 t 2 t_2 t2时刻互不相关。

平稳随机过程

所谓平稳随机过程
是指它的n维概率分布函数或n维概率密度函数与时间t
的起始位置无关。
即平稳随机过程的统计特性不随时间的平移而发生变化。

狭义平稳随机过程在任何时刻其概率统计特性都是一样的。

  • 狭义平稳随机过程的一维概率分布函数与时间t无关,
  • 狭义平稳随机过程的二维概率分布函数和二维概率密度函数仅与两时间间隔 τ \tau τ的大小有关

广义平稳过程
条件: E [ x ( t ) ] = m X = c , R X ( t 1 , t 2 ) = R X ( τ ) E[x(t)] = {m_X} = c,{R_X}({t_1},{t_2}) = {R_X}(\tau ) E[x(t)]=mX=cRX(t1,t2)=RX(τ)
只有当X(n)是高斯随机过程时,宽平稳才是严平稳

平稳周期性随机过程的自相关函数也满足周期性。一循环平稳

彼此统计独立的平稳随机过程

  • 它们乘积的自相关函数等于各随机过程自相关函数的乘积。
  • 它们乘积的均值等于各随机过程均值的乘积。
  • 它们乘积的随机过程也是广义平稳随机过程。

各态历经过程

随机信号的统计特性—需要很多样本函数的集平均
平稳随机过程的一个最大特点便是它的统计特性与时间位置无关
假如存在一个持续时间足够长的平稳随机过程的样本函数x(t),在其时间历程中经历了随机过程X(t)的各种可能状态—“各态历经性”(即遍历性)

时间平均:

  1. 时间均值: < X ( t ) > = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) d t < X(t) > = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_0^T {x(t)dt} <X(t)>=TlimT10Tx(t)dt
  2. 时间自相关函数: < R X ( τ ) > = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) x ( t + τ ) d t < {R_X}(\tau ) > = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_0^T {x(t)x(t + \tau )dt} <RX(τ)>=TlimT10Tx(t)x(t+τ)dt
  3. 时间方差: < σ X 2 > = lim ⁡ T → ∞ 1 T ∫ 0 T [ x ( t ) − < x ( t ) > ] 2 d t < \sigma _X^2 > = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_0^T {{{[x(t) - < x(t) > ]}^2}dt} <σX2>=TlimT10T[x(t)<x(t)>]2dt

各态历经性:

  • 狭义遍历过程要求随机过程的所有时间平均在概率意义上趋于相应的集平均。

  • 广义各态历经性
    条件:

    1. 广义平稳随机过程
    2. E [ X ( t ) ] = < x ( t ) > E[X(t)] = < x(t) > E[X(t)]=<x(t)>以概率1成立,则该平稳随机过程的均值具有各态历经性
    3. R X ( τ ) = E [ X ( t ) X ( t + τ ) ] = lim ⁡ T → ∞ 1 2 T ∫ − T T x ( t ) x ( t + τ ) d t = < R X ( τ ) > {R_X}(\tau ) = E[X(t)X(t + \tau )] = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{2T}}\int_{ - T}^T {x(t)x(t + \tau )dt = < {R_X}(\tau ) > } RX(τ)=E[X(t)X(t+τ)]=Tlim2T1TTx(t)x(t+τ)dt=<RX(τ)>以概率1成立,则该平稳随机过程的自相关函数具有各态历经性。

    如果平稳随机过程的均值与自相关函数均具有各态历经性,则称随机过程具有各态历经性(Ergodjcjty),简称遍历性。

平稳过程的相关函数

自相关函数:

R X ( τ ) = E [ X ( t ) X ( t + τ ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x ( t ) x ( t + τ ) p 2 ( x 1 , x 2 ; τ ) d x 1 d x 2 {R_X}(\tau ) = E[X(t)X(t + \tau )] = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x(t)x(t + \tau ){p_2}({x_1},{x_2};\tau )d{x_1}d{x_2}} } RX(τ)=E[X(t)X(t+τ)]=x(t)x(t+τ)p2(x1,x2;τ)dx1dx2
性质:

  1. R X ( 0 ) = E [ X 2 ( t ) ] > 0 {R_X}(0) = E[{X^2}(t)] > 0 RX(0)=E[X2(t)]>0–均方值
    平稳过程的均方值可由自相关函数在 τ \tau τ=0时确定,且为非负。其物理意义表示平稳过程X(t)的总平均功率。

  2. R X ( τ ) = R X ( − τ ) {R_X}(\tau ) = {R_X}( - \tau ) RX(τ)=RX(τ)同理 C X ( τ ) = C X ( − τ ) {C_X}(\tau ) = {C_X}( - \tau ) CX(τ)=CX(τ)

  3. R X ( 0 ) > ∣ R X ( τ ) ∣ {R_X}(0) > \left| {{R_X}(\tau )} \right| RX(0)>RX(τ)同理 C X ( τ ) {C_X}(\tau) CX(τ)
    说明自相关函数在 τ \tau τ=0时取得最大值。

  4. 对于周期平稳过程X(t)=X(t+T),其自相关函数也是周期T的函数,即 R X ( τ ) = R X ( τ + T ) R_X(\tau)=R_X(\tau+T) RX(τ)=RX(τ+T)一循环平稳

  5. 平稳过程的自相关函数及R x _x x( τ \tau τ)对于任意时刻 t 1 , t 2 , . . . , t n {t_1},{t_2},...,{t_n} t1,t2,...,tn和任意函数g(t)下式成立 ∑ i = 1 n ∑ j = 1 n R X ( t i − t j ) g ( t i ) g ( t j ) ⩾ 0 \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {{R_X}({t_i} - {t_j})g({t_i})g({t_j}) \geqslant 0} } i=1nj=1nRX(titj)g(ti)g(tj)0

  6. 对于非周期平稳过程X(t),如果X(t+ τ \tau τ)和X(t)在 ∣ τ ∣ → ∞ \left| \tau \right| \to \infty τ时相互统计独立。则有
    lim ⁡ τ → ∞ R X ( τ ) = m X 2 \mathop {\lim }\limits_{\tau \to \infty } {R_X}(\tau ) = m_X^2 τlimRX(τ)=mX2同理 lim ⁡ τ → ∞ C X ( τ ) = 0 \mathop {\lim }\limits_{\tau \to \infty } {C_X}(\tau ) = 0 τlimCX(τ)=0

  7. 自相关函数和自协方差函数关系:
    R X ( τ ) = C X ( τ ) + m X 2 {R_X}(\tau ) = {C_X}(\tau ) + m_X^2 RX(τ)=CX(τ)+mX2
    R X ( 0 ) = C X ( 0 ) + m X 2 = σ X 2 + R X ( ∞ ) {R_X}(0) = {C_X}(0) + m_X^2 = \sigma _X^2 + {R_X}(\infty ) RX(0)=CX(0)+mX2=σX2+RX()
    均方值=方差+均值平方
    总信号平均功率=偏离均值的误差平均功率+均值对应功率
    在这里插入图片描述

  8. 自相关函数和功率谱是一对傅立叶变换对(维纳–辛钦定理,仅对平稳过程的相关函数才能成立)
    平稳随机过程的自相关函数的傅立叶变换是非负函数:
    P X ( ω ) = ∫ − ∞ ∞ R X ( τ ) e − j ω τ d τ ⩾ 0 {P_X}(\omega ) = \int_{ - \infty }^\infty {{R_X}(\tau ){e^{ - j\omega \tau }}d\tau \geqslant 0} PX(ω)=RX(τ)eτdτ0
    R X ( τ ) = 1 2 π ∫ − ∞ ∞ P X ( ω ) e j ω τ d ω {R_X}(\tau ) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {{P_X}(\omega ){e^{j\omega \tau }}d\omega } RX(τ)=2π1PX(ω)eτdω

(自)相关系数作用:描述对平稳过程两个不同时刻取值之间的内在联系
自相关系数定义一也称归一化自相关函数标准自协方差函数
相关时间​****这一概念,当 τ > τ 0 \tau>\tau_0 τ>τ0时,则可认为X(t)和X(t+ τ \tau τ)之间已不相关。
相关时间定义:平稳过程的相关系数降至5%的时间间隔为相关时间 ∣ γ X ( τ 0 ) ∣ ⩽ 5 % \left| {{\gamma _X}({\tau _0})} \right| \leqslant 5\% γX(τ0)5%
另一种定义:有时也用下图的矩形(高为1,底为 τ 0 \tau_0 τ0的矩形)
面积等于阴影面来定义 τ 0 \tau_0 τ0,即
在这里插入图片描述

  • 相关时间的大小直接反映了平稳过程的变化程度

    1. 相关时间越大,说明随机过程两个不同时刻取值之间的关联性越大,即过程变化越缓慢,该过程频率偏低频
    2. 相关时间越小,说明随机过程两个不同时刻取值之间的关联程度越小,即过程变化越剧烈,该过程频率偏高频

互相关函数

随机过程X(t)和Y(t)的互相关函数定义为
在这里插入图片描述

平稳过程X(t)和Y(t)之间是广义联合平稳:如果X(t)和Y(t)均满足平稳性,那么,它们之间的互相关函数是时间间隔 τ = t 2 − t 1 \tau=t_2-t_1 τ=t2t1的一维函数时,则X(t)和Y(t)之间是广义联合平稳的。
在这里插入图片描述

平稳过程X(t)和Y(t)之间的时间互相关函数:
在这里插入图片描述

结论:
在这里插入图片描述

性质:

  1. R X Y ( τ ) = R Y X ( − τ ) {R_{XY}}(\tau ) = {R_{YX}}( - \tau ) RXY(τ)=RYX(τ)
  2. ∣ R X Y ( τ ) ∣ ⩽ R X ( 0 ) R Y ( 0 ) \left| {{R_{XY}}(\tau )} \right| \leqslant \sqrt {{R_X}(0){R_Y}(0)} RXY(τ)RX(0)RY(0)
    ∣ C X Y ( τ ) ∣ ⩽ σ X 2 σ Y 2 \left| {{C_{XY}}(\tau )} \right| \leqslant \sqrt {\sigma _X^2\sigma _Y^2} CXY(τ)σX2σY2 —> ∣ γ X Y ( τ ) ∣ ⩽ 1 \left| {{\gamma _{XY}}(\tau )} \right| \leqslant 1 γXY(τ)1
  3. 2 ∣ R X Y ( τ ) ∣ ⩽ R X ( 0 ) + R Y ( 0 ) 2\left| {{R_{XY}}(\tau )} \right| \leqslant {R_X}(0) + {R_Y}(0) 2RXY(τ)RX(0)+RY(0)

功率谱密度函数

狄里赫莱条件的绝对可积条件其实质是要求非周期信号 f ( t ) f(t) f(t)必须能量有限。其总能量由以下巴塞瓦尔(Parseval)等式表示
∫ − ∞ ∞ ∣ f ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ ∞ ∣ F ( ω ) ∣ 2 d ω \int_{ - \infty }^\infty {{{\left| {f(t)} \right|}^2}} dt = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {{{\left| {F(\omega )} \right|}^2}d\omega } f(t)2dt=2π1F(ω)2dω式中 ∣ F ( ω ) ∣ 2 {\left| {F(\omega )} \right|^2} F(ω)2为能量谱密度
能量守恒:时域内的信号能量=频域内的信号能量

估计

理论基础:随机过程的各态历经假设

  1. 均值估计
    可用N个观测值的算术平均作为均值 m x m_x mx的估值(高斯分布时最大似然估计)
    无偏估计、有偏估计:若估计量的数学期望值等于真值。称该估计量为无偏估计,反之则称为有偏估计。
    一致估计量:就是N→0时,估计量的方差趋于零,则称该估计量为一致估计量。

  2. 方差估计
    在这里插入图片描述

    该估计是有偏估计量,但是渐近无偏
    该估计是一致估计
    均方误差小的估计量为好估计量

  3. 自相关函数的估计
    对于零均值平稳序列(一个随机系列可以先去均值)
    自相关函数 R X ( k ) R_X(k) RX(k)的估值 R X ∧ ( k ) {\mathop R\limits^ \wedge _X}(k) XR(k)高斯分布时最大似然估计)
    在这里插入图片描述

    R X ∧ ( k ) {\mathop R\limits^ \wedge _X}(k) XR(k)是有偏的,但渐近无偏的
    在这里插入图片描述
    在这里插入图片描述
    R X ∧ ( k ) {\mathop R\limits^ \wedge _X}(k) XR(k)是一致估计

随机信号通过线性系统

线性时不变(LTI)系统:

  • 可加性
  • 比例性
  • 时不变性

对于某LTI系统,如果输入随机过程是严格平稳的。那么,系统响应的随机过程也是严格平稳的。

系统响应

  • 均值:
    在这里插入图片描述

    LTI系统,输入广义平稳随机过程,输出随机过程的均值是一常数,为输入广义平稳随机过程均值乘系统直流分量的放大倍数

  • 自相关函数:
    在这里插入图片描述

    LTI系统,输入广义平稳随机过程,输出随机过程的自相关函数为输入广义平稳随机过程自相关函数系统冲激响应双重卷积
    一个LTI系统,如果输入随机过程是广义平稳的,那么,系统响应随机过程也是广义平稳的。

  • 互相关函数
    在这里插入图片描述
    在这里插入图片描述

  • LTI系统输入输出各态历经性
    可以看出,各态历经的随机过程经过LTI系统后,输出随机过程Y(t)的时间均值及时间相关函数分别与集平均及集相关函数相同,说明了输出随机过程Y(t)也是各态历经过程

  • 频率分析
    在这里插入图片描述

    ∣ H ( ω ) ∣ 2 {\left| {H(\omega )} \right|^2} H(ω)2称为系统的功率传输函数
    可知:系统的功率传输能力仅与系统的幅频特性有关,而与系统的相频特性无关。
    说明:

    1. 平稳白噪声X(t)通过LTI系统后,其输出平稳过程的功率谱形状与系统的幅频特性相似。如果系统的幅频特性是严格带限的,那么系统输出过程的功率谱也将是严格带限的,并具有相同的频谱宽度。
      应用:通常可利用这一特性在系统输入端施加高斯白噪声,而在系统输出产生功率谱形状为的 ∣ H ( t ) ∣ 2 {\left| {H(t)} \right|^2} H(t)2高斯平稳随机过程,这是很有实际意义。
    2. 第二,不论系统频率响应函数的相频特性如何,仅由上式是无法获得系统的相位信息的。从某个角度来讲,这是采用二阶统计量分析平稳随机过程的致命弱点

白噪声通过线性系统

  • 噪声带宽
    白噪声是具有均匀功率谱的平稳随机过程,当它通过线性系统后,其输出端的噪声功率就不再是均匀的了。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 在这里插入图片描述

    可见,白噪声通过低通滤波器后、其输出功率谱变窄,宽度等于滤波器的通带 Δ ω / 2 \Delta \omega /2 Δω/2
    表明,输出随机过程的相关时间与系统的带宽(也就是输出随机过程的谱宽)成反比。
    这就是说:系统带宽(过程的谱宽)越宽、相关时间 τ 0 \tau_0 τ0越小、输出过程随时间变化(起伏)越剧烈,反之,系统带宽(过程谱宽)越窄,则 τ 0 \tau_0 τ0越大,输出过程随时间变化就缓慢。

概率分布
若系统输入虽然不是高斯过程,然而输入过程的带宽远大于线性系统的通频带,此时,可以证明系统的输出是趋于高斯分布的随机过程。
如果线性系统输入的随机过程是非高斯的,但是它的功率谱宽度远大于系统的带宽时,可以证明:系统输出可以得到接近于高斯分布的随机过程,于是同样可以通过求得输出均值及相关函数集合,写出输出过程的n维概率密度。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值