使用黑白颜色填充双三次bezier曲面片

一、实验项目要求

任务1:使用均布网格细分曲面

任务2:使用黑白棋盘颜色填充细分后的小面。

二、理论分析或算法分析

在双三次贝塞尔曲面算法中,绘制出面,双的面颜色设置为黑色,单的面绘制成白色,重新写一个函数来构成面的绘画,因为是间隔的,所以然后设一个i和j,i和j相加对2的求余,如果可以除尽就是填充黑色,如果没有除尽就是填充白色;

使用均布网格细分曲面:

采用非递归,然后实现步长为0.1,将曲面划分为10*10的网格,然后将四个顶点连接成一个曲面;double tStep = 0.1;//步长

设置100个网格,CP2 gridP2[11][11];    //100个平面网格

采用斜投影:gridP2[ROUND(u*10)][ROUND(v*10)] = projection.CavalierProjection(pt);//斜投影

填充颜色设置:黑色:CBrush brushBlack(RGB(0, 0, 0));

           白色: CBrush brushWhite(RGB(255, 255, 255));

绘制网格并填充:for (int i = 0; i < 10; i++)

                  for (int j = 0; j < 10; j++)

                  {

                      if ((i + j) % 2 == 0)

                          pDC->SelectObject(&brushBlack);

                      else

                          pDC->SelectObject(brushWhite);

                      pDC->BeginPath();

                      pDC->MoveTo(ROUND(gridP2[i][j].x), ROUND(gridP2[i][j].y));

                      pDC->LineTo(ROUND(gridP2[i + 1][j].x), ROUND(gridP2[i + 1][j].y));

                      pDC->LineTo(ROUND(gridP2[i + 1][j + 1].x), ROUND(gridP2[i + 1][j + 1].y));

                      pDC->LineTo(ROUND(gridP2[i][j + 1].x), ROUND(gridP2[i][j +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值