一、实验项目要求
任务1:使用均布网格细分曲面
任务2:使用黑白棋盘颜色填充细分后的小面。
二、理论分析或算法分析
在双三次贝塞尔曲面算法中,绘制出面,双的面颜色设置为黑色,单的面绘制成白色,重新写一个函数来构成面的绘画,因为是间隔的,所以然后设一个i和j,i和j相加对2的求余,如果可以除尽就是填充黑色,如果没有除尽就是填充白色;
使用均布网格细分曲面:
采用非递归,然后实现步长为0.1,将曲面划分为10*10的网格,然后将四个顶点连接成一个曲面;double tStep = 0.1;//步长
设置100个网格,CP2 gridP2[11][11]; //100个平面网格
采用斜投影:gridP2[ROUND(u*10)][ROUND(v*10)] = projection.CavalierProjection(pt);//斜投影
填充颜色设置:黑色:CBrush brushBlack(RGB(0, 0, 0));
白色: CBrush brushWhite(RGB(255, 255, 255));
绘制网格并填充:for (int i = 0; i < 10; i++)
for (int j = 0; j < 10; j++)
{
if ((i + j) % 2 == 0)
pDC->SelectObject(&brushBlack);
else
pDC->SelectObject(brushWhite);
pDC->BeginPath();
pDC->MoveTo(ROUND(gridP2[i][j].x), ROUND(gridP2[i][j].y));
pDC->LineTo(ROUND(gridP2[i + 1][j].x), ROUND(gridP2[i + 1][j].y));
pDC->LineTo(ROUND(gridP2[i + 1][j + 1].x), ROUND(gridP2[i + 1][j + 1].y));
pDC->LineTo(ROUND(gridP2[i][j + 1].x), ROUND(gridP2[i][j +