本次介绍一种新的自然启发式元启发式算法——凤头豪猪优化器(Crested Porcupine Optimizer,CPO)。该成果于2024年1月发表在中科院1区SCI top期刊Knowledge-Based Systems(IF = 8.8)上。
1、简介
受到凤头豪猪(CP)各种防御行为的启发,用于精确优化各种优化问题,特别是那些具有大规模攻击的问题。从最不具攻击性到最具攻击性,冠豪猪使用四种不同的保护机制:视觉、声音、气味和物理攻击。第一和第二种防御技术(视觉和声音)反映了CPO的探索行为,而第三和第四种防御策略(气味和物理攻击)反映了CPO的剥削行为。所提出的算法提出了一种称为循环种群减少技术的新策略,以模拟并非所有CP都激活其防御机制,而只激活那些受到威胁的介词。该策略促进了收敛速度和种群多样性。
2、改进点(比较简单,没有使用传统的Levy飞行等策略)
- 去掉了种群缩减
- 改进了第一防御阶段
- 改进了第二防御阶段
- 改进了第四防御阶段
- 引入了一种新方法加速收敛
注:只是改进了其中的位置更新项,没有添加其他的参数或者策略。