本期介绍了基于肺性能的优化(LPO),这是一种新颖高效的算法,灵感来自人体肺部的规则和智能性能。LPO从呼吸系统的复杂机制和适应性中汲取灵感。肺部在氧气交换方面表现出显着的效率,展示了其功能的高水平优化。强制振荡技术测量气压和气流速率,以评估呼吸系统作为电阻抗。阻抗曲线有两个不同的组成部分,呼吸阻力(ZR)和呼吸电抗(ZX),可以从临床和工程角度进行分析,以深入了解呼吸系统的工作原理。LPO旨在通过模拟和利用这种自然效率来提供一种解决复杂优化问题的创新方法。为了评估LPO的有效性,使用无约束优化函数CEC2005和CEC2014进行了实验,以及工程设计优化问题。这些问题与文献中提出的众多当代算法进行了比较。结果表明,LPO在处理这些优化问题方面表现出色,并展示了应对广泛的现代优化挑战的潜力。
该成果于2024年2月发表在中科院1区 top SCI期刊Computer Methods in Applied Mechanics and Engineering(if = 7.2).
1 数学建模
LPO是一种优化器,以初始群体或气团Mi开始,其中i=1,2,…, Npop,它在身体的功能循环中进入血液并创建一个新的群体。这个初始群体是在客观问题范围的两个最大值(Mmax)和最小值(Mmin)之间随机生成的。这个初级群体与血液质量或颗粒的作用相同.
1.1 空气进出肺部
选择了肺部的RC模型,并考虑到建模参数,我们假设进入肺部的气团的位置如下,这在优化科学中是初始种群的新位置。
M
i
n
e
w
,
1
=
M
i
+
M
i
×
(
R
i
2
+
(
1
2
π
×
f
r
×
R
i
C
i
)
2
×
s
i
n
(
2
π
×
f
r
×
t
)
×
s
i
n
(
2
π
×
f
r
×
t
+
θ
i
)
)
M_{i}^{\mathrm{new,1}}=M_{i}+M_{i}\times\left(\sqrt{R_{i}^{2}+\left(\frac{1}{2\pi\times f r\times R_{i}C_{i}}\right)^{2}}\times\mathrm{sin}(2\pi\times f r\times t)\times\mathrm{sin}(2\pi\times f r\times t+\theta_{i})\right)
Minew,1=Mi+Mi×(Ri2+(2π×fr×RiCi1)2×sin(2π×fr×t)×sin(2π×fr×t+θi))
θ
i
=
tan
−
1
(
1
2
π
×
f
r
×
R
i
C
i
)
R
i
=
f
(
S
i
)
f
i
=
D
,
t
=
I
e
r
\begin{array}{c}{{\theta_{i}=\tan^{-1}\left({\frac{1}{2\pi\times f r\times R_{i}C_{i}}}\right)}}\\ {{R_{i}=f(S_{i})}}\\ {{\ }}\\ {{f_{i}=D,t=I e r}}\end{array}
θi=tan−1(2π×fr×RiCi1)Ri=f(Si) fi=D,t=Ier
C
i
=
f
(
S
i
)
2
×
sin
(
θ
i
)
C_{i}={\frac{f(S_{i})}{2}}\times\sin(\theta_{i})
Ci=2f(Si)×sin(θi)
1.2 二氧化碳从空气中分离血液在静脉中流动
被肺部与空气分离的氧团被带入血液中,这个团Mi相当于问题空间中种群的运动,氧进入血液的运动可以模拟为如下式,即血液通过施加在其上的压力运动,它从施加较多压力的一侧,即较好的适应值,移动到施加较少力的一侧,即较弱的适应值。
M
i
n
e
w
,
2
=
M
i
n
e
w
,
1
+
K
i
1
×
α
i
×
(
M
i
n
e
w
,
1
−
M
1
)
+
K
23
×
α
i
×
(
M
3
−
M
2
)
M_{i}^{n e w,2}=M_{i}^{n e w,1}+K_{i1}\times\alpha_{i}\times\left(M_{i}^{n e w,1}-M_{1}\right)+K_{23}\times\alpha_{i}\times\left(M_{3}-M_{2}\right)
Minew,2=Minew,1+Ki1×αi×(Minew,1−M1)+K23×αi×(M3−M2)
K
i
j
=
s
i
g
n
(
f
(
M
j
)
−
f
(
M
i
)
)
=
{
1
i
f
f
(
M
i
)
<
f
(
M
j
)
−
1
i
f
f
(
M
i
)
>
f
(
M
j
)
0
i
f
f
(
M
i
)
=
f
(
M
j
)
K_{i j}=s i g n(f(M_{j})-f(M_{i}))={\left\{\begin{array}{l l}{1\;i f f(M_{i})\lt f(M_{j})}\\ {-1\;i f\;f(M_{i})\gt f(M_{j})}\\ {0\;i f f(M_{i})=f(M_{j})}\end{array}\right.}
Kij=sign(f(Mj)−f(Mi))=⎩
⎨
⎧1iff(Mi)<f(Mj)−1iff(Mi)>f(Mj)0iff(Mi)=f(Mj)
在上面的等式(13)中,Kij控制动脉内第i个血团(即Mi)的运动方向。在每个循环周期中,αi是0到1之间的数字,它决定了移位的值,并倾向于更高的量。
1.3 从血液中分离出二氧化碳
将此动作建模为群体组合和交叉,如下所示
M
i
n
e
w
,
1
=
M
i
+
M
i
j
n
e
w
,
3
×
(
R
i
2
+
(
1
2
π
×
f
r
×
R
i
C
i
)
2
×
sin
(
2
π
×
f
r
×
t
)
×
sin
(
2
π
×
f
r
×
t
+
θ
i
)
)
{\cal M}_{i}^{new,1}={\cal M}_{i}+{\cal M}_{i j}^{new,3}\times\left(\sqrt{{\cal R}_{i}^{2}+\left(\displaystyle\frac{1}{2\pi\times f r\times R_{i}C_{i}}\right)^{2}}\times\sin(2\pi\times f r\times t)\times\sin(2\pi\times f r\times t+\theta_{i})\right)
Minew,1=Mi+Mijnew,3×
Ri2+(2π×fr×RiCi1)2×sin(2π×fr×t)×sin(2π×fr×t+θi)