一区近10分论文复现!光伏模型参数估计,适用于200多种优化算法-附完整的MATLAB代码,一键即可运行

光伏(PV)发电系统对可持续和无污染太阳能的利用至关重要。然而,由于其固有的非线性、多变量和多模态特性,PV系统的参数估计仍然非常具有挑战性。文章提出了一种最先进的优化方法,即方向排列差分进化算法(DPDE),以解决几种太阳能PV模型的参数估计问题。通过充分利用搜索群体和微分向量方向产生的信息,DPDE可以具有跳出局部最优的强大全局探索能力。基于单、双、三二极管模型和PV模块模型进行了六组实验。此论文发表在中科院1区Energy Conversion and Management上(if=9.9).

1.太阳能PV模型和问题表述

采用精确的数学PV单元模型来分析PV系统的非线性输出特性至关重要。已经建立了一系列PV模型,包括单二极管模型(SDM)、双二极管模型(DDM)、三二极管模型(TDM)和PV模块模型(MM),PV的等效电路描述如下所示。


(a)单二极管模型,(b)双二极管模型,©三二极管模型,(d)PV模块模型。

2.1 单二极管模型

SDM由单二极管模型与光生电流和分流电阻并联组成,然后与电阻串联,如图1(a)所示。由于其简单的控制结构、低电路复杂性和易于硬件实现,SDM被认为是最广泛使用的光伏模型。该模型适用于需要快速响应和相对较低成本制造的光伏系统。电流输出IL可以通过以下公式计算
I L = I p h − I d − I s h = I p h − I s d [ exp ⁡ ( q ( V L + R s I L ) a k T ) − 1 ] − V L + R s I L R s h I_{L}=I_{ph}-I_{d}-I_{sh}=I_{ph}-I_{sd}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{akT}\right)-1\right]-\frac{V_{L}+R_{s}I_{L}}{R_{sh}} IL=IphIdIsh=IphIsd[exp(akTq(VL+RsIL))1]RshVL+RsIL

其中 I p h I_{ph} Iph表示光生电流, I d I_d Id是二极管电流, I s h I_{sh} Ish是分流电阻电流, I s d I_{sd} Isd,表示二极管的反向饱和电流, V L V_L VL表示输出电压的值, R s R_s Rs是串联电阻, R s h R_{sh} Rsh是分流电阻, α \alpha α表示二极管的理想因子, q = 1.60217646 × 1 0 − 19 C q = 1.60217646 \times10^{-19} C q=1.60217646×1019C表示电子的电荷, k = 1.3806503 × 1 0 − 23 J / K k=1.3806503 \times 10^{-23} J/K k=1.3806503×1023J/K表示玻尔兹曼常数, T T T表示开尔文温度(°K)。

从方程(1)可以看出,需要正确估计SDM中的五个未知参数 I p h , I s d , R s , R s h I_{ph}, I_{sd}, R_s, R_{sh} Iph,Isd,Rs,Rsh α \alpha α

2.2. 双二极管模型

通过考虑在耗尽区产生的复合电流损失的影响,如图1(b)所示,DDM通过添加额外的二极管来扩展SDM,以提高其模拟PN结物理效应的性能。通常,DDM比SDM表现更精确,因为第一和第二二极管可以模拟扩散电流和复合效应,它适用于需要精确输出I-V特性的光伏系统,特别是在低辐照水平下。在DDM中,构建的太阳能光伏电流由以下公式确定:
I L = I p h − I d 1 − I d 2 − I s h = I p h − I s d 1 [ exp ⁡ ( q ( V L + R s I L ) a 1 k T ) − 1 ] − I s d 2 [ exp ⁡ ( q ( V L + R s I L ) a 2 k T ) − 1 ] − V L + R s I L R s h {I}_{L} = {I}_{ph} - {I}_{d1} - {I}_{d2} - {I}_{sh} = {I}_{ph} - {I}_{sd1}\left\lbrack {\exp \left( \frac{q\left( { {V}_{L} + {R}_{s}{I}_{L}}\right) }{ {a}_{1}{kT}}\right) - 1}\right\rbrack - {I}_{sd2}\left\lbrack {\exp \left( \frac{q\left( { {V}_{L} + {R}_{s}{I}_{L}}\right) }{ {a}_{2}{kT}}\right) }\right. - 1\rbrack - \frac{ {V}_{L} + {R}_{s}{I}_{L}}{ {R}_{sh}} IL=IphId1Id2Ish=IphIsd1[exp(a1kTq(VL+RsIL))1]Isd2[exp(a2kTq(VL+RsIL))1]R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小狂人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值