openVINO初级课学习笔记

第一节课AI将改变生活的方方面面,视觉应用带来巨大的机遇和商业潜力,未来我们通过摄像头和计算机来寻找特定目标或异常行为,intel的openVINO帮助我们构建AI产品;

第二节课讨论了视频是当今最丰富的数据形式,也是最常见的互联网数据传输类型,讨论了像素,知道大量像素构成图片,大量图片组成视频,我们学习了过滤图像,使其模糊、清晰、进行边缘检测和特征提取,还讨论了如何加速计算机视觉处理和openVINO工具包中的openCV;

第三节课讨论了视频压缩、食品中的冗余以及视频压缩的工作原理,如何使用inter显卡加速压缩以及如何通过使用Media-sdk使用inter快速视频同步技术帮助加速视频处理;

第四节讨论了人工智能算法和面向视觉应用的神经网络,讨论了实时执行神经网络的复杂性以及inter的openVINO工具包中的模拟化优化器和推理引擎如何为推理神经网络加速提供帮助;

第五节讨论了视频分析流程,包括构建AI应用的步骤以及所需的落地要求,然后学习了openVINO工具套件中如何用于构建AI应用,因为他具有用于计算机视觉、视频处理和基于深度学习的推理的软件和解决方案;

第六节课中观看了四个Demo的演示;

手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个程准备精细,每一都避免千篇一律,前一有对后一的预告,后一有对前一的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。基本提纲:1、程综述、环境配置2、OpenVINO范例-超分辨率(super_resolution_demo)3、OpenVINO范例-道路分割(segmentation_demo)4、OpenVINO范例-汽车识别(security_barrier_camera_demo)5、OpenVINO范例-人脸识别(interactive_face_detection_demo)6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo)7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo)8、NCS和GOMFCTEMPLATE9、程小结,资源分享
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值