文章目录
前言
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
堆的概念及结构
堆(数据结构) 在逻辑上是一个完全二叉树而在物理上是一个数组。
堆是一种顺序存储结构(采用数组方式存储),仅仅是利用完全二叉树的顺序结构的特点进行分析。
已知二叉树根结点的下标是root
,那么它左孩子的下标left=2*root+1
,右孩子的下标right=2*root+2
。
已知孩子结点的下标(不区分左右)为child
,那么双亲的下标为(child-1)/2
。
将满足根的值小于等于所有子树结点的值,称为小堆;根的值大于等于所有子树结点的值称为大堆。
堆的实现
我们实现堆还是要用三个文件,来让堆的代码看起来更加的简单易懂,
test.c
,用来让测试堆的代码
Heap.c
,我们些堆的函数
Heap.h
,包括堆函数的头文件
(1)创建一个堆
typedef int HPDataType;
typedef struct Heap
{
HPDataType* a;
int size;
int capacity;
}Heap;
(2)堆的初始化
//初始化堆
void HeapInit(Heap* php)
{
assert(php);
php->a = NULL;
php->capacity = php->size = 0;
}
(3)堆的销毁
//销毁堆
void HeapDestory(Heap* php)
{
assert(php);
free(php->a);
php->a = NULL;
php->capacity = php->size;
}
(4)打印堆
//打印堆
void HeapPrint(Heap* php)
{
assert(php);
for (int i = 0; i < php->size; i++)
{
printf("%d ", php->a[i]);
}
printf("\n");
}
(5)堆的添加元素
因为堆本质上是一个数组,我们堆添加元素的思路,就是在数组的最后一位添加元素,然后看他的父节点是不是比他大或者小(创建大堆和创建小堆),如果是大堆,父节点比他小,就交换,然后知道最后交换到头结点。
这时我们就用到一种算法,叫做向上调整算法。
向上调整算法
//向上调整
//大堆:将孩子和父节点比较,比父节点大,则交换,比父节点小,就break。循环下去,直到把这个新插入的数字送到头
void AdjustUp(HPDataType* a, int child)
{
int parent = (child - 1) / 2;
while (child > 0)
{
if (a[parent] < a[child])
{
Swap(&a[parent], &a[child]);
child = parent; //往上推
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
交换函数
//交换函数
void Swap(int* p1, int* p2)
{
int temp = *p1;
*p1 = *p2;
*p2 = temp;
}
堆插入元素的代码
//在堆尾面插入数据
void HeapPush(Heap* php, HPDataType x)
{
assert(php);
if (php->capacity == php->size)
{
int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
HPDataType* temp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
if (temp == NULL)
{
perror("malloc fail");
exit(-1);
}
php->a = temp;
php->capacity = newcapacity;
}
php->a[php->size++] = x; //插入元素
AdjustUp(php->a, php->size - 1); //将刚插入的元素进行向上调整
}
(6)删除堆顶的元素
我们堆删除元素,都是删除堆顶的元素,那么怎么删除元素了,
我们数组,最好删除的元素就是尾删,所以我们将第一个 元素和最后一个元素交换,然后我们size–.
然后我们在删除完后,还要保持他是一个堆,用到一个向下调整算法。
这个算法就是将父节点(最根节点开始),和他的最大的子节点进行交换,然后在进行到最后。
向下调整算法
//向下调整
void AdjustDown(HPDataType* a, int n, int parent)
{
int child = 2 * parent + 1;
while (child < n)
{
//找大孩子,要防止child+1越界
if (child + +1 < n && a[child] > a[child + 1])
{
child++;
}
//比较父亲和大孩子
if (a[parent] > a[child])
{
Swap(&a[parent], &a[child]);
parent = child; //往下压
child = 2 * parent + 1;
}
else
{
break;
}
}
}
物理和逻辑图的详细对比
删除元素的框架
//删除堆顶元素
//将堆顶元素和最后一个元素交换,然后删除堆尾元素,再对剩余的size-1个元素进行向下调整
void HeapPop(Heap* php)
{
assert(php);
assert(!HeapEmpty(php));
Swap(&php->a[0], &php->a[php->size - 1]); //交换堆顶和堆尾元素
php->size--;//删除堆尾元素
AdjustDown(php->a, php->size - 1, 0); //对剩余的size-1个元素进行调整
}
(7)找堆顶的元素
//找堆顶元素
HPDataType HeapTop(Heap* php)
{
assert(php);
assert(!HeapEmpty(php));
return php->a[0];
}
(8)查看堆的大小
//查看堆的大小
HPDataType HeapSize(Heap* php)
{
assert(php);
return php->size;
}
(9)判断堆是否为空
//判断堆是否为空
bool HeapEmpty(Heap* php)
{
assert(php);
return php->size == 0;
}
堆的构建
我们堆的构建用的算法是我们在删除元素的时候向下调整算法。至于为什么不用向上调整,我们后面分析
void HeapCreat(Heap* php, HPDataType* a, int n)
{
assert(php);
php->a = (HPDataType*)malloc(sizeof(HPDataType) * n);
if (php->a == NULL)
{
perror("malloc fail");
exit(-1);
}
memcpy(php->a, a, sizeof(HPDataType) * n); //将a拷贝到堆里拷贝过来
php->capacity = php->size = n; //n是元素个数
//向下调整
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(php->a, n, i);//传父节点
}
}
堆排序
我们想要堆排序,首先我们就要建堆,有了堆我们才可以排序,所以我们怎么将一个数组变成一个堆呢?
首先有两种方法,
1.第一种就是用插入的思想,将每一个数一个一个插进去,这时就要用我们的向上调整算法。
2.第二种方法就是用我们的上面用向下调整算法的思想建堆
向上调整算法建堆
其实这个思想就是将我们的每一个数插入堆的方法,肯定大家又点不理解,下来画个图,大家就理解了
<1>向上调整算法建堆代码
直接从头遍历一遍,一个一个调整就行了
//向上调整
for (int i = 1 ; i < n; i++)
{
AdjustUp(php->a,i);//传父节点
}
<2>向上调整建堆的时间复杂度
我们向上调整算法将每个数遍历一遍,然后将每个数的都要进行向上调整算法,我们就可以通过计算算,高度为h,
第一层不需要调整,
第二层开始调整,第二层有
2
1
2^1
21 个元素,每个再向上调整中进行了一次调整。
第三层有
2
2
2^2
22个元素,每个数最多调整2次
依次类推,在第n层,有
2
h
−
1
2^{h-1}
2h−1个元素,每个元素换h-1次。
向下调整算法建堆
思路就是:我们想将最后一个叶子结点和他的父节点,先构成一个堆,然后我们再将父节点的上一个结点的子节点,将这个构建一个堆,知道最后到根结点。看下面我画的解释图。
<1>向下调整算法建堆代码:
//向下调整
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(php->a, n, i);//传父节点
}
<2>向下调整算法的时间复杂度
有的同学,看都不看,看到了两个循环,直接就说他的时间复杂度是O( N 2 N^2 N2),这样就错了
首先分析一下,因为我们是从我们的最后一个数的父节点才开始算,我们的最后的叶子结点就不进行计算,而且我们想一下,我们的最多的结点不算,这种算法,一看这个时间复杂度就可以。
所以我们的最后一层没有进行堆排,
在我们的倒数第二层就进行一次调整
在倒数第三层进行2次调整
所以依次类推,第一层就进行h-1次调整
比较两种算法
我们比较算法就是通过时间复杂度和空间复杂度进行比较,我们很容易就比较出来了,明显是向下调整算法好。他的时间复杂度底。
其实这个我们也可以通过画思路图就可以看明白了,
在向上调整算法中,我们的最后一层的结点最多,并且向上进行最多次,
而在向下调整算法中,我们最后一层的结点都不进行排序,并且在倒数第二层最多的结点才进行一次,而到了最高层最少的结点进行最多次。
如果我们要升序,建大堆还是建小堆
首先先说答案:建大堆。
思路:为什们建大堆,我们大堆的头就是最大的数,这是无容置疑的,然后我们将最大的数和堆最后一个数进行交换,我们的再用向下调整算法调整堆不包括最后一个最大的数,(利用我们堆的删除的思路)知道我们的堆就剩下一个。
//堆排序
void HeapSort(HPDataType* a, int n)
{
//建堆
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);//交换
AdjustDown(a, end, 0);//对剩余的n-1个数据调整
end--;
}
}
堆排序的时间复杂度
Top-K问题
TopK问题实战
我们建立一个文件,向文件内随机写入n个1000以内的数字,求前K个最大的数字
//TopK问题
//自己创立一个文件,往里面随机写入1000个数字,再找前10大的数字
void test6()
{
int n, k;
printf("请输入n和k:>");
scanf("%d%d", &n, &k);
srand((size_t)time(NULL)); //播种
FILE* pin = fopen("data.txt", "w");
if (pin == NULL)
{
perror("fopen fail");
return;
}
//向文件中写入n个随机10000以内数字
while (n--)
{
int val = rand() % 10000; //限定10000以内的数字
fprintf(pin, "%d\n", val);
}
fclose(pin);
/****************************************************/
//找topK
//int minHeap[k]; //不能有变长数组
int* minHeap = (int*)malloc(sizeof(int) * k);
if (minHeap == NULL)
{
perror("malloc fail");
return;
}
FILE* pout = fopen("data.txt", "r");
if (pout == NULL)
{
perror("fopen fail");
return;
}
//建立小堆
int i = 0;
//取数字
for (i = 0; i < k; i++)
{
fscanf(pout, "%d", &minHeap[i]);
}
//建堆
for (i = (k - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(minHeap, k, i);
}
//比较
int val = 0;
while (fscanf(pout, "%d", &val) != EOF)
{
if (val > minHeap[0])
{
minHeap[0] = val;
AdjustDown(minHeap, k, 0);
}
}
//打印堆
for (i = 0; i < k; i++)
{
printf("%d ", minHeap[i]);
}
free(minHeap);
minHeap = NULL;
fclose(pout);
pout = NULL;
}