[离散数学]集合论基础P_2:特殊集合与集合间的关系

本文详细介绍了集合论中的空集、全集、相等关系、包含关系(子集与真子集)以及幂集的概念,并通过实例和文氏图进行解释。集合的相等性通过外延性原理证明,而幂集则是所有子集构成的集合,对理解集合论基础至关重要。
摘要由CSDN通过智能技术生成


前言

第一讲:集合论基础

集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域,是基础的基础。

在离散数学中,需要使用集合来表达各类离散量以及离散量之间的关系,所以首先学习集合论是重中之重。

本文特殊集合与集合间的关系是集合论基础的第二部分。


1. 空集

定义

  • 不含任何元素的集合叫做空集empty set),记作 ∅ \varnothing .
  • 空集可以符号化为 ∅ = { x ∣ x ≠ x } \varnothing =\left\{ x\left| x\ne x \right. \right\} ={xx=x}.

例子

  • A = { x ∣ x ∈ R , x 2 < 0 } A=\left\{ x\left| x\in R,x^2<0 \right. \right\} A={x xR,x2<0},则 A = ∅ A=\varnothing A=
  • ∣ ∅ ∣ = 0 , ∣ { ∅ } ∣ = 1 \left| \varnothing \right|=0\text{,}\left| \left\{ \varnothing \right\} \right|=1 =0{}=1
    空集的基数为0,如果空集作为集合的元素时基数为1

空集是绝对唯一的。


2. 全集

定义

  • 针对一个具体范围,我们考虑的所有对象的集合叫做全集universal set),记作 U U U E E E.
  • 在文氏图一般使用方形表示全集。

例子

  • 在立体几何中全集是由空间的全体点组成的;
  • 在我国的人口普查中,全集是由我国所有人组成的。

全集是相对唯一的。


3. 相等关系

元素的基本特性

  • 集合中的元素是无序的。 { 1 , 2 , 3 , 4 } \left\{ 1,2,3,4 \right\} {1,2,3,4} { 2 , 3 , 1 , 4 } \left\{ 2,3,1,4 \right\} {2,3,1,4}相同。
  • 集合中的元素是不同的。 { 1 , 2 , 2 , 3 , 4 , 3 , 4 , 2 } \left\{ 1,2,2,3,4,3,4,2 \right\} {1,2,2,3,4,3,4,2} { 1 , 2 , 3 , 4 } \left\{ 1,2,3,4 \right\} {1,2,3,4}相同。
    (相同元素看做一个元素)

例子

E = { x ∣ ( x − 1 ) ( x − 2 ) ( x − 3 ) = 0 , x ∈ R } E=\left\{ x\left| \left( x-1 \right) \left( x-2 \right) \left( x-3 \right) =0, x\in R \right. \right\} E={x(x1)(x2)(x3)=0,xR} F = { x ∣ x ∈ Z + , x 2 < 12 } F=\left\{ x\left| x\in Z^+, x^2<12 \right. \right\} F={x xZ+,x2<12},可见 E E E F F F具有相同的元素 { 1 , 2 , 3 } \left\{1,2,3\right\} {1,2,3},此时称两个集合相等

外延性原理(Theorem)

两个集合 A A A B B B相等,当且仅当它们的元素完全相同,记为 A = B A=B A=B,否则 A A A B B B不相等,记为 A ≠ B A\ne B A=B


4. 包含关系

子集和真子集

A = { B A S I C , P A S C A L , A D A } A=\left\{ BASIC,PASCAL,ADA \right\} A={BASIC,PASCAL,ADA} B = { A D A , P A S C A L } B=\left\{ ADA,PASCAL \right\} B={ADA,PASCAL},此时 A A A中含有 B B B中所有的元素,这种情况称为 A A A包含 B B B.

定义

A A A B B B是任意两个集合,

  • 如果 B B B的每个元素都是 A A A中的元素,则称 B B B A A A子集,也称做 B B B A A A包含或 A A A包含 B B B,记作 B ⊆ A B\subseteq A BA,否则记作 B ⊈ A B\nsubseteq A BA.
  • 如果 B ⊆ A B\subseteq A BA并且 A ≠ B A\ne B A=B,则称B是A的真子集,也称做B被A真包含或A真包含B,记作 B ⊂ A B\subset A BA,否则记作 B ⊄ A B⊄ A BA.

" ⊆ \subseteq "关系的数学语言描述为: B ⊆ A ⟺ B\subseteq A\Longleftrightarrow BA ∀ x \forall x x,如果 x ∈ B x\in B xB,则 x ∈ A x\in A xA.

文氏图

文氏图: B ⊆ A B\subseteq A BA
文氏图
由子集定义可有:

  1. ∅ ⊆ A \varnothing \subseteq A A
  2. A ⊆ A A\subseteq A AA

例子

已知 A = { 1 , 2 , 3 , 4 } A=\left\{ 1,2,3,4 \right\} A={1,2,3,4} B = { 1 , 2 , 4 } B=\left\{ 1,2,4 \right\} B={1,2,4} C = { 2 , 3 } C=\left\{ 2,3 \right\} C={2,3} D = { 3 , 2 } D=\left\{ 3,2 \right\} D={3,2},可见:

  1. A ⊆ A A\subseteq A AA B ⊆ A B\subseteq A BA C ⊆ A C\subseteq A CA D ⊆ A D\subseteq A DA
  2. C ⊆ D C\subseteq D CD D ⊆ C D\subseteq C DC,同时 C = D C=D C=D

证明集合相等

定理

A A A B B B为任意两个集合,则 A = B A=B A=B ⟺ \Longleftrightarrow A ⊆ B A\subseteq B AB并且 B ⊆ A B\subseteq A BA

⭐⭐⭐该定理非常重要,这是证明集合相等的一种非常有效的方式。

证明框架

证明:

  1. 首先证明 A ⊆ B : A\subseteq B: AB: ∀ x ∈ A , ⋯   , x ∈ B . ∴ A ⊆ B . \forall x\in A,\cdots ,x\in B. \therefore A\subseteq B. xA,,xB.AB.
  2. 其次证明 B ⊆ A : B\subseteq A: BA: ∀ x ∈ B , ⋯   , x ∈ A . ∴ B ⊆ A . \forall x\in B,\cdots ,x\in A. \therefore B\subseteq A. xB,,xA.BA.

由以上两点,可知A=B。

n元集的子集

例子

A = { a , b , c } A=\left\{ a,b,c \right\} A={a,b,c},求出 A A A的所有子集。

解: 由于 ∣ A ∣ = 3 \left| A \right|=3 A=3,因而 A A A的子集可能包含的元素个数 m = 0 , 1 , 2 , 3 m=0,1,2,3 m=0,1,2,3

  • m = 0 m=0 m=0,即没有任何元素,也就是空集 ∅ \varnothing

  • m = 1 m=1 m=1,从 A A A中任取1个元素,则有 C 3 1 = 3 个 : { a } , { b } , { c } C_{3}^{1}=3\text{个}:\left\{ a \right\} ,\left\{ b \right\} ,\left\{ c \right\} C31=3:{a},{b},{c}

  • m = 2 m=2 m=2,从 A A A中任取2个元素,则有 C 3 2 = 3 个 : { a , b } , { b , c } , { a , c } C_{3}^{2}=3\text{个}:\left\{ a,b \right\} ,\left\{ b,c \right\} ,\left\{ a,c \right\} C32=3:{a,b},{b,c},{a,c}

  • m = 3 m=3 m=3,从 A A A中任取3个元素,则有 C 3 3 = 1 个 : { a , b , c } C_{3}^{3}=1\text{个}:\left\{ a,b,c \right\} C33=1:{a,b,c}

以上8个集合就是 A A A的所有子集。

⭐推广:对于任意 n n n元集合 A A A,它的 m m m ( 0 ⩽ m ⩽ n ) \left( 0\leqslant m\leqslant n \right) (0mn)子集个数为 C n m C_{n}^{m} Cnm个,所以不同的子集个数为: C n 0 + C n 1 + ⋯ + C n n = ( 1 + 1 ) n = 2 n C_{n}^{0}+C_{n}^{1}+\cdots +C_{n}^{n}=\left( 1+1 \right) ^n=2^n Cn0+Cn1++Cnn=(1+1)n=2n.


5. 幂集

定义

A A A为任意集合,把 A A A的所有不同子集构成的集合叫做 A A A幂集power set),记作 P ( A ) P(A) P(A),即, P ( A ) = { x ∣ x ⊆ A } P\left( A \right) =\left\{ x\left| x\subseteq A \right. \right\} P(A)={xxA}

x ∈ P ( A ) ⟺ X ⊆ A x\in P\left( A \right) \Longleftrightarrow X\subseteq A xP(A)XA
如果一个元素 x x x属于 A A A的幂集,那么这个元素 x x x一定属于集合 A A A.

例子

A = { a , b , c } A=\left\{ a,b,c \right\} A={a,b,c} B = { a , { b , c } } B=\left\{ a,\left\{ b,c \right\} \right\} B={a,{b,c}},求他们的幂集 P ( A ) P\left( A \right) P(A) P ( B ) P\left( B \right) P(B)
解:
P ( A ) = { ∅ , { a } , { b } , { c } , { a , b } , { b , c } , { a , c } , { a , b , c } } P\left( A \right) =\left\{ \varnothing ,\left\{ a \right\} ,\left\{ b \right\} ,\left\{ c \right\} ,\left\{ a,b \right\} ,\left\{ b,c \right\} ,\left\{ a,c \right\} ,\left\{ a,b,c \right\} \right\} P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

P ( B ) = { ∅ , { a } , { { b , c } } , { a , { b , c } } } P\left( B \right) =\left\{ \varnothing ,\left\{ a \right\} ,\left\{ \left\{ b,c \right\} \right\} ,\left\{ a,\left\{ b,c \right\} \right\} \right\} P(B)={,{a},{{b,c}},{a,{b,c}}}

幂集也叫做集族集合的集合,对集族的研究在数学方面、知识库和表处理语言以及人工智能等方面都有十分重要的意义。
 


总结

本文介绍了集合论基础中的特殊集合与集合间的关系部分,对集合有一个初步的了解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

H3T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值