ACGAN 简介与代码实战

1.介绍
  CGAN通过结合标签信息来提高生成数据的质量,SGAN通过重建标签信息来提高生成数据的质量,那么我们可不可以两者都用,答案是显然的,因为ACGAN就是这样干的。更加详细的内容可以参见论文:Conditional Image Synthesis with Auxiliary Classifier GANs

 
2.模型结构
   G的输入是分类标签和固定分布噪声,D的输出是真假和分类标签。

 Ls为真假判断损失, Lc为分类损失,D is trained to maximize LS + LC while G is trained to maximize LC -LS.

3.模型特点

     CGAN(参见CGAN 简介与代码实战_天竺街潜水的八角的博客-CSDN博客),SGAN(参见SGAN 简介与代码实战_天竺街潜水的八角的博客-CSDN博客),InfoGAN(参见InfoGAN 简介与代码实战_天竺街潜水的八角的博客-CSDN博客),而ACGAN明显是结合了这三者的特点。

4.代码实现keras 

class ACGAN():
    def __init__(self):
        # Input shape
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.num_classes = 10
        self.latent_dim = 100
 
        optimizer = Adam(0.0002, 0.5)
        losses = ['binary_crossentropy', 'sparse_categorical_crossentropy']
 
        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss=losses,
            optimizer=optimizer,
            metrics=['accuracy'])
 
        # Build the generator
        self.generator = self.build_generator()
 
        # The generator takes noise and the target label as input
        # and generates the corresponding digit of that label
        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,))
        img = self.generator([noise, label])
 
        # For the combined model we will only train the generator
        self.discriminator.trainable = False
 
        # The discriminator takes generated image as input and determines validity
        # and the label of that image
        valid, target_label = self.discriminator(img)
 
        # The combined model  (stacked generator and discriminator)
        # Trains the generator to fool the discriminator
        self.combined = Model([noise, label], [valid, target_label])
        self.combined.compile(loss=losses,
            optimizer=optimizer)
 
    def build_generator(self):
 
        model = Sequential()
 
        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
        model.add(Activation("tanh"))
 
        model.summary()
 
        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,), dtype='int32')
        label_embedding = Flatten()(Embedding(self.num_classes, 100)(label))
 
        model_input = multiply([noise, label_embedding])
        img = model(model_input)
 
        return Model([noise, label], img)
 
    def build_discriminator(self):
 
        model = Sequential()
 
        model.add(Conv2D(16, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))
        model.add(ZeroPadding2D(padding=((0,1),(0,1))))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=1, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
 
        model.add(Flatten())
        model.summary()
 
        img = Input(shape=self.img_shape)
 
        # Extract feature representation
        features = model(img)
 
        # Determine validity and label of the image
        validity = Dense(1, activation="sigmoid")(features)
        label = Dense(self.num_classes, activation="softmax")(features)
 
        return Model(img, [validity, label])
 
    def train(self, epochs, batch_size=128, sample_interval=50):
 
        # Load the dataset
        (X_train, y_train), (_, _) = mnist.load_data()
 
        # Configure inputs
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
        y_train = y_train.reshape(-1, 1)
 
        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))
 
        for epoch in range(epochs):
 
            # ---------------------
            #  Train Discriminator
            # ---------------------
 
            # Select a random batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs = X_train[idx]
 
            # Sample noise as generator input
            noise = np.random.normal(0, 1, (batch_size, 100))
 
            # The labels of the digits that the generator tries to create an
            # image representation of
            sampled_labels = np.random.randint(0, 10, (batch_size, 1))
 
            # Generate a half batch of new images
            gen_imgs = self.generator.predict([noise, sampled_labels])
 
            # Image labels. 0-9 
            img_labels = y_train[idx]
 
            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, [valid, img_labels])
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, sampled_labels])
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
 
            # ---------------------
            #  Train Generator
            # ---------------------
 
            # Train the generator
            g_loss = self.combined.train_on_batch([noise, sampled_labels], [valid, sampled_labels])
 
            # Plot the progress
            print ("%d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[3], 100*d_loss[4], g_loss[0]))
 
            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.save_model()
                self.sample_images(epoch)
 
    def sample_images(self, epoch):
        r, c = 10, 10
        noise = np.random.normal(0, 1, (r * c, 100))
        sampled_labels = np.array([num for _ in range(r) for num in range(c)])
        gen_imgs = self.generator.predict([noise, sampled_labels])
        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5
 
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/%d.png" % epoch)
        plt.close()

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值