LKNet--用于OLED显示屏Mura缺陷检测的神经网络

《御街行·失魂雨 冰风谷》

纷纷雪落人飘坠 同死生 共玉碎 前尘后世君莫问 柔肠百结如醉 情丝未断 尘缘难了 萦绕千千岁

舍却残生犹不悔 身已空 尽成泪 路长梦短无寻处 总是情愁滋味 眉间心上 柔肠百结 尽付东流水

 

第一个自己设计的神经网络模型,纪念一下。

基于AI深度学习,用于OLED显示屏Mura缺陷的检测模型,包括整体检测流程,神经网络模型结构和完整的代码框架,包括缺陷照片获取、照片预处理、神经网络模型设计和模型工业化部署。

本方案已申请专利。

本文为一种基于AI深度学习神经网络模型的液晶面板(OLED)Mura良品检测方法,属于计算机视觉、图像分类领域,涉及一种基于多层卷积特征提取的OLED面板Mura缺陷检测方法。包括采集各画面多种缺陷类型的OLED面板(截取整个OLED面板区域的图片,目的是去除拍照图片周边的环境干扰部分),统一标记其为NG类型,采集各画面良品类型的OLED面板(图片选择跟缺陷的要求一致),统一标记其为OK类型;将图片根据灰度分为背景直流分量和Mura缺陷交流分量,将照片灰度的直流分量统一到固定值,用于适配不同灰度的缺陷照片;本专利设计了一种基于DenseNet和Xception神经网络模型称为LKNet,用于构建OLED面板良品检测卷积神经网络的主干部分,并加入特征金字塔结构用于多尺寸检测,使用空间金字塔池化适配不同尺寸大小的图片,增加通道混洗,用于特征通道间的特征流通,增加了L2正则化和Drop技术用于防止神经网络过拟合,设计了一种用于降维的空间通道金字塔池化(SCPP)模块,用于代替1*1卷积,加入数据并行(DP)模式用于减少显存消耗和提升训练速度;通过训练数据集对神经网络进行深度学习;将待分类图片输入已训练模型进行推理,计算属于每个类别的概率值,选出概率最大类别,确定其类型(OK或NG);并与传统的缺陷检测软件判定的类别进行综合判等,深度网络输出的类别为最大的概率值,对传统的缺陷软件检测判定为OK品图片,则依据深度网络的输出结果,否则输出依据传统检测软件判别为NG结果。本发明提高了深度卷积网络的泛化性能,与传统检测算法融合使用,降低了漏检率和误检率。。

由于是公司项目,暂时不能放出源码,等过一段时间看看;

作者的硬件配置是Ubuntu18.04+CUDA10.1+cuDNN8.5+GeForce RTX Titan 24G *2,看着很吊,其实一般。

目录

1.整体检测流程

2.缺陷照片获取

3.照片预处理

4.LKNet模型结构

5.训练神经网络

OLED屏显示Mura缺陷AI检测流程

OLED屏幕Mura AI检测方案分为OLED显示屏成像拍照、照片预处理、AI神经网络模型设计编码、AI模型训练、AI模型部署测试五个步骤。如下图:

OLED显示屏Mura缺陷照片获取

AI模型处理的是图片数据,因此需要通过高分辨率的工业相机拍照获取样本高清照片,本文使用海康MV-CH1510-11XM 1.51亿像素COMS CoaXPress工业面阵相机通过垂直于屏幕方向拍摄Mura缺陷屏照片。

缺陷照片预处理

对于通过拍照获取的Mura缺陷屏照片,在送入AI神经网络进行训练前,需要对照片进行一些预处理工作,包括照片裁剪、照片背景灰度直流分量统一、照片数据集增强等。

照片裁剪:使用相机拍摄得到的Mura缺陷照片除了缺陷屏幕部分外还包括一些周围背景部分,这部分图像是不需要的,可能会对AI神经网络的训练及检测带来影响,且多出来的图像也会增加AI神经网络训练和测试时的时间成本以及GPU显存消耗,因此需要通过裁剪的方式去除这些无用图像,只保留存在Mura缺陷的显示屏部分。

照片背景灰度直流分量统一化:由于Mura缺陷类型多样以及不同厂家拍照条件不同,不同的缺陷照片的背景灰度会不一样,这会对AI神经网络的训练以及检测带来不便,训练数据集和测试数据集照片背景灰度不同,可能会影响最终检测结果。Mura缺陷照片包括背景的灰度直流分量和Mura缺陷的灰度交流分量,本专利通过保留照片中Mura缺陷的灰度交流分量,统一所有缺陷照片中的背景的灰度直流分量,使得AI神经网络模型可以适配所有不同背景灰度的Mura缺陷照片。

具体处理步骤如下图:

对于三通道彩色照片,处理步骤略有不同,绿色通道按照上图进行处理,红色和蓝色通道像素在减去各自通道像素平均灰度值后,增加的统一灰度值和绿色通道不同,按照各自通道灰度平均值和绿色通道灰度平均值的比例,增加相应比例的统一灰度值。

比如,RGB三通道的像素灰度平均值分别为50、75、100,绿色通道增加的统一灰度值为128,即绿色通道所有像素值减去50,再加上128;红色通道所有像素值减去75,再加上128*(75/50);蓝色通道所有像素值减去100,再加上128*(100/50);

数据集增强:AI神经网络训练时需要大量的缺陷照片,通过从大量样本中学习到的数据特征进行建模,有些时候数据集并不是那么充分,需要通过数据增强方式人为“增加”缺陷样本,数据增强包括对照片进行旋转、偏移、镜像、裁剪、拉伸等图像操作,使得新图片和原图“看起来”不一样,一定意义上生成了新的照片,扩充了数据集。

LKNet模型结构

本专利自主设计一套AI神经网络体系结构名为LKNet,如下图:

FPN:由于Mura类型各异,大小不同,AI神经网络随着卷积层数的增加,小的Mura缺陷会被淹没在背景中,这被称为多尺度问题,特征金字塔网络(Feature Pyramid Networks)通过融合不同深度卷积层的特征,较好地改善了多尺度问题,使得AI神经网络能对不同大小形状的Mura都有较好的检测率。FPN结构如下图:

1.C1、C2、C2、C2、C5为不同层次卷积后的特征,将C2~C5各自通过1×1卷积进行通道特征融合以及降维,分别生成C2’、C3’、C4’、P5;

2.将P5依次进行二倍最近邻上采样,分别得到P4、P3、P2;

3.将C4’和P4、C3’和P3、C2’和P2,各自特征图对应通道逐元素相加,得到新的P4、P3、P2;

4.将新的P2、P3、P4进行3×3卷积,得到F2、F3、F4;

5.将F2、F3、F4、P5进行通道叠加,做为FPN的最终输出,输入下一级网络中;

Channel Shuffle:将FPN输出的特征图的各个通道打乱顺序,增加通道间的特征融合,模块结构如下图:

Trans:包括重新设计的用于通道间池化的SCPP(Spatial Channel Pyramid Pooling)和全局平均池化,使用SCPP减少特征通道数并进行通道特征融合,再使用全局平均池化作为下采样操作。

SCPP(patial Channel Pyramid Pooling):一般降低特征图通道数是使用1×1卷积,但1×1逐点卷积计算量巨大,本专利设计了一种特征通道间的空间池化方法,可以代替1×1卷积进行特征通道降维和通道间特征信息融合。

SCPP将特征图通道进行不同数量的分组,比如1份,每份为所有通道;2份,每份为1/2所有通道;4份,每份为1/4所有通道;每一份里面,各个通道的对应位置元素进行池化操作(最大池化或平均池化),每份通道生成一张特征图,将每一份通道的特征图按通道叠加,输出为新的特征图,最终输出特征通道数为1+2+4+…。为了将最终输出通道数为2的n次方,所有通道做池化的输出通道(C=1)多复制一份输出。

Dense:对上一层输入的特征图进行多次BN-Relu-Conv操作,每次操作的输入特征图为前面所有操作的特征图的总和,按通道叠加,就是每一层的输入来自前面所有层的输出,使得较前面的特征信息可以较好的传递到后面的卷积层,并增加了Res结构,在增加神经网络层数基础上,有效减小梯度消失现象,模块结构如下图:

Xception:输入特征先进行普通卷积操作,再对 1 × 1卷积后的每个channel分别进行 3 × 3卷积操作,最后将结果 concat,模块结构图如下:

SPP:空间金字塔池化一种可以不用考虑图像大小,输出图像固定长度网络结构,并且可以做到在图像变形情况下表现稳定,模块结构图如下:

SPP将输入特征图在H-W维度进行分块池化,最右边的图,对每一个特征通道进行池化,每个通道得到一个特征值;中间的图,将每一个特征通道分为4份,再对每1/4个特征通道分别进行池化,每个通道得到4个特征值;以此类推,最左边的特征图,每个通道得到16个特征值,将这些特征值拼接起来,送入下一层全连接神经网络(FC)。

Fully Connect:全连接神经网络接收SPP输入的特征值向量,通过全连接神经网络的特征建模,输出缺陷照片分类结果(OK/NG)数值,传入下一级log softmax分类模块。

Log SoftMax:函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 x 是一个实数的向量(正数或负数都无所谓, 没有限制). 然后, 第i个 Softmax(x) 的组成是 :

输出是一个概率分布: 每个元素都是非负的, 并且所有元素的总和都是1。log softmax在softmax的结果上再做多一次log运算,即log(softmax(x))。将AI神经网络分类值(OK/NG)最大的作为判别结果输出。

本专利使用L2正则化和Dropout技术用于较小神经网络过拟合效应,使用PReLU激活函数和kaiming权重初始化方法。

本专利使用Nvidia APEX并行计算加速库,用于减少神经网络模型训练时间以及降低显卡显存消耗,并加入了混合精度以及同步归一化技术。

推荐一下任怨的小说,元龙,神工,斩仙,都相当不错;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千穹凌帝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值