朴素贝叶斯

朴素贝叶斯

朴素贝叶斯(Naive Bayes ) 是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。

朴素贝叶斯原理

1. 概率公式

在这里插入图片描述

  1. 条件概率:表示事件A在另外一个事件B已经发生条件下的发生概率,P(A|B)
    • 在女神喜欢的条件下,职业是程序员的概率?
      1. 女神喜欢条件下,有 2、3、4、7 共 4 个样本
      2. 4 个样本中,有程序员 3、4 共 2 个样本
      3. 则 P(程序员|喜欢) = 2/4 = 0.5
  2. 联合概率:表示多个条件同时成立的概率,P(AB) = P(A) P(B|A)
    特征条件独立性假设:P(AB) = P(A) P(B)
    • 职业是程序员并且体型匀称的概率?
      1. 数据集中,共有 7 个样本
      2. 职业是程序员有 1、3、4 共 3 个样本,则其概率为:3/7
      3. 在职业是程序员,体型是匀称有 3 共 1 个样本,则其概率为:1/3
      4. 则即是程序员又体型匀称的概率为:3/7 * 1/3 = 1/7
    • 【思考】:体型匀称并且是程序员的概率是多少? P(B) P(A|B)
  3. 联合概率 + 条件概率:
    • 在女神喜欢的条件下,职业是程序员、体重超重的概率? P(AB|C) = P(A|C) P(B|AC)
      1. 在女神喜欢的条件下,有 2、3、4、7 共 4 个样本
      2. 在这 4 个样本中,职业是程序员有 3、4 共 2 个样本,则其概率为:2/4=0.5
      3. 在在 2 个样本中,体型超重的有 1 个样本,则其概率为:1/2 = 0.5
      4. 则 P(程序员, 超重|喜欢) = 0.5 * 0.5 = 0.25

简言之:
条件概率:在去掉部分样本的情况下,计算某些样本的出现的概率,表示为:P(B|A)
联合概率:多个事件同时发生的概率是多少,表示为:P(AB) = P(B)*P(A|B)

2. 贝叶斯公式

在这里插入图片描述

  1. P© 表示 C 出现的概率
  2. P(W|C) 表示 C 条件 W 出现的概率
  3. P(W) 表示 W 出现的概率
    在这里插入图片描述
  • P(C|W) = P(喜欢|程序员,超重)
  • P(W|C) = P(程序员,超重|喜欢)
  • P© = P(喜欢)
  • P(W) = P(程序员,超重)
  1. 根据训练样本估计先验概率P©:P(喜欢) = 4/7
  2. 根据条件概率P(W|C)调整先验概率:P(程序员,超重|喜欢) = 1/4
  3. 此时我们的后验概率P(C|W)为:P(程序员,超重|喜欢) * P(喜欢) = 4/7 * 1/4 = 1/7
  4. 那么该部分数据占所有既为程序员,又超重的人中的比例是多少呢?
    1. P(程序员,超重) = P(程序员) * P(超重|程序员) = 3/7 * 2/3 = 2/7
    2. P(喜欢|程序员, 超重) = 1/7 ➗ 2/7 = 0.5

3. 朴素贝叶斯

在前面的贝叶斯概率计算过程中,需要计算 P(程序员,超重|喜欢) 和 P(程序员, 超重) 等联合概率,为了简化联合概率的计算,朴素贝叶斯在贝叶斯基础上增加:特征条件独立假设即:特征之间是互为独立的。

  • 条件独立假设等于说是用于分类的特征在类确定的条件下都是条件独立的,这一假设使得朴素贝叶斯算法变得简单,但是有时会牺牲一定的分类准确率。

此时,联合概率的计算即可简化为:

  1. P(程序员,超重|喜欢) = P(程序员|喜欢) * P(超重|喜欢)
  2. P(程序员,超重) = P(程序员) * P(超重)

朴素贝叶斯分类时,对给定的输入x,通过学习到的模型计算后验概率分布P(Y=c|X=x),将后验概率最大的类作为x的类输出。

4. 拉普拉斯平滑系数

当有一个或几个属性的类条件概率为0导致整个类的后验概率为0的时候,朴素贝叶斯就失效了,无法根据朴素贝叶斯分类该记录。这里介绍的条件概率的m估计就是解决办法。

由于训练样本的不足,导致概率计算时出现 0 的情况。为了解决这个问题,我们引入了拉普拉斯平滑系数。

在这里插入图片描述

  1. α 是拉普拉斯平滑系数,一般指定为 1
  2. Ni 是 F1 中符合条件 C 的样本数量
  3. N 是在条件 C 下所有样本的总数
  4. m 表示所有独立样本的总数

拉普拉斯平滑系数的作用------为了避免概率值为 0

5. 案例

考虑任务:预测一个贷款者是否会拖欠还款,我们基于以下图表做分析,假设有一组测试记录X={有房=否,婚姻状况=已婚,年收入=120W},要分类该记录,我们需要利用训练数据中的可用信息计算后验概率P(Yes|X)和P(No|X),如果P(Yes|X)>P(No|X),那么记录分类为Yes,反之为No。

** 应用举例**

Tid 有房 婚否 年收入 拖欠贷款 概率计算
1 单身 125 P(有房=是|拖欠贷款=否)=3/7
2 已婚 100 P(有房=否|拖欠贷款=否)=4/7
3 单身 70 P(有房=是|拖欠贷款=是)=0
4 已婚 120 P(有房=是|拖欠贷款=否)=1
5 离异 95 P(婚否=单身|拖欠=否)=2/7
6 已婚 60 P(婚否=离异|拖欠=否)=1/7
7 离异 220 P(婚否=已婚|拖欠=否)=4/7
8 单身 85 P(婚否=单身|拖欠=是)=2/3
9 已婚 7
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值