玩转ChatGPT:最全学术论文提示词分享

在当今数字时代,人工智能(AI)技术正迅速改变各行各业的运作方式。特别是,OpenAI的ChatGPT等语言模型以其强大的文本生成能力,成为许多领域研究和写作的重要工具。这篇文章我们将为大家介绍如何有效利用ChatGPT完成论文写作,提供一系列实用的提示词,以帮助研究人员和学生在各个阶段优化他们的写作过程。从选题到文献综述,再到数据分析和结论,这些提示词将展示ChatGPT如何提升学术写作的效率和质量,推动研究工作的顺利进行。

1. 选题及问题定义

prompt 1:在研究主题内缩小的范围

“在[广泛的主题领域]内生成符合我的专业知识和当前研究趋势的研究主题。我对探索[特定方面]及其对[相关背景]的影响特别感兴趣。“

prompt 2:确定所选研究领域的研究问题

“请帮助我制定一个研究问题,深入探讨[新兴趋势/技术]对[选定研究领域]内[关键因素]的影响。目标是确定有助于解决现实世界挑战的研究问题。”

prompt 3:探索[社会问题]的社会含义

“描述一个研究问题,检查[社会问题]的[潜在原因/影响],并提出切实可行的解决方案。重点应放在[相关背景]及其潜在影响上。”

prompt 4:连接专业-调查[专业A]和[专业B]交叉点

“生成一个研究主题,探索[学科a]和[学科B]之间的协同作用,以应对[复杂挑战]。目标是为[特定问题]创建跨学科解决方案。”

prompt 5:分析历史和当前事件–[历史事件A]与[当前事件B]

“制定一个研究问题,分析[所选领域]内[历史事件a]和[当前事件B]之间的相似之处。重点应是了解它们对[相关背景]的影响和教训。”

prompt **6:**评估[特定政策/事件]在[地区或国家]的[经济/社会/政治]影响

“请帮助我定义一个研究问题,以评估[特定政策/事件]对[地区或国家]的[经济/社会/政治]影响。目标是了解所需的影响和潜在调整。”

prompt 7:应用[理论框架]在[所选上下文]中分析[特定现象]

“制定一个研究主题,利用[理论框架]在[选定的背景]内分析[特定现象]。目的是深入了解[研究重点]及其含义。”

prompt 8:探索[争议话题]的多种观点

“生成一个研究问题,批判性地检查围绕[有争议的话题]的[不同观点/因素]。目标是有助于在[相关背景]中全面理解[问题]。”

prompt 9:解决[特定主题领域]内未探索的方面

“请帮助我制定一个研究问题,调查[特定主题领域]内的[未探索方面]。重点是阐明这方面的意义和对该领域的潜在贡献。”

prompt 10:确定研究差距和趋势一致性

“生成与当前趋势一致的潜在研究主题,并解决[广泛主题领域]内文献中的差距。目的是确定一个有助于提高[特定方面]知识和理解的研究问题。”

2.文献综述

prompt 1:综合文献综述[所选领域]

“提供过去[特定时间范围]内[所选领域]关键文献的详细概述。总结主要理论、发现和方法,突出需要进一步探索的差距。”

prompt 2:分析[特定研究领域]的理论框架

“对[特定研究领域]中应用的现有理论框架进行彻底审查。讨论其在解决[研究问题]方面的优势、局限性和相关性,并提出潜在的调整。”

prompt 3:综合研究[新兴趋势/技术]影响

“总结[相关背景下]有关[新兴趋势/技术]影响的最新研究。分析这些发现如何有助于理解其对[特定方面]的影响,并确定需要进一步研究的领域。“

prompt 4:揭开【研究课题】文献中的矛盾与共识

“检查与[研究主题]相关的文献,找出相互冲突的观点和共识。分析导致这些差异的因素,并提出协调这些差异的方法。”

prompt 5:调查[特定领域]研究中的差距

“进行全面的文献回顾,以确定[特定领域]研究中的差距。突出缺乏经验证据的领域,并提出未来探索的潜在途径。”

prompt 6:【研究领域】学术的历史演变

“追溯[研究领域]学术从起源到现在的历史发展。分析关键里程碑、研究重点的转移及其对当前理解的影响。“

prompt 7:比较分析[所选领域]中的[关键理论/模型]

“比较和对比[所选领域]中的突出理论或模型。评估它们在解决[研究问题]方面的适用性,并提出一个综合框架,整合它们的优势。“

prompt 8:对[特定研究领域]方法学的Meta分析

“对[特定研究领域]采用的研究方法进行元分析。评估其在解决[研究问题]方面的有效性,确定最佳实践,并推荐创新方法。”

prompt 9:确定[研究领域]文献中出现的主题

“识别和分析[研究领域]内最近文献中出现的主题和趋势。讨论这些主题如何反映研究重点的转变,并提出其对未来研究的启示。”

prompt 10:绘制[选定领域]的研究轨迹图

“创建一个可视化地图,说明[所选领域]的研究轨迹,重点介绍开创性研究、突破和正在进行的研究领域。讨论这些轨迹对未来研究方向的影响。”

3.提出假设或研究问题

prompt 1:为[研究问题]构建可测试的假设

“生成旨在解决先前确定的[研究问题]的特定假设。确保这些假设是可测量的、清晰的,并且能够进行实证检验。“

prompt 2:为[选定的研究领域]开发研究问题

“制定在[选定研究领域]内探索[特定方面]的研究问题。这些问题应指导调查并为研究提供明确的重点。”

prompt 3:假设[变量A]对[变量B]的影响

“提出假设,在[研究问题]的背景下预测[变量A]对[变量B]的影响。考虑潜在的因果关系和任何中介或调节因素。”

prompt 4:探索[因素]和[结果]之间的关系

“起草假设,检查[因素]之间的关系及其对[结果]的影响。指定这些关系的方向,并根据现有文献提供理由。”

prompt 5:调查[理论]作为[研究领域]假设的框架

“撰写以[理论]为基础的假设,以解释[研究领域]内的[研究问题]。描述该理论如何通知您的假设并形成您的方法。”

prompt 6:为[研究问题]假设不同的情景

“提出一组假设,探索[研究问题]的各种场景或潜在结果。考虑不同因素及其相互作用,创建一组全面的假设。”

prompt 7:为[实验设计]制定无效和备选假设

“为[实验设计]设计零假设和替代假设,旨在测试[变量]对[结果]的影响。确保这些假设是具体的、可测试的,并且与研究目标一致。”

prompt 8:基于比较分析建立假设

“通过比较[研究领域]内的[不同案例/背景]生成假设。分析异同,得出有助于理解[研究问题]的有意义假设。”

prompt 9:假设[干预]对[结果]的长期影响

“制定假设,预测[干预]对[结果]的长期影响。考虑干预可能影响结果的潜在时间框架、变量和机制。“

prompt 10:为[新兴趋势/技术]生成探索性研究问题

“开发探索性研究问题,探索[新兴趋势/技术]对[研究领域]的潜在影响和影响。关注可激发深入调查的开放式问题。”

  1. 设计研究方法

prompt 1:为[研究问题]设计[定量/定性/混合方法]研究

“概述调查[研究问题]的综合研究设计。指定方法(定量、定性或混合)、数据收集方法、样本量以及任何相关工具或工具。“

prompt 2:为[研究领域]选择最佳的数据收集方法

“推荐适当的数据收集方法(调查、访谈、观察等)以收集有关[研究领域]的信息。根据研究问题的性质和预期结果证明您的选择是正确的。“

prompt 3:定义目标人群和抽样策略

“描述您研究的目标人群,并提出确保代表性和有效性的抽样策略。讨论选择抽样技术(随机、分层、方便等)的理由。“

prompt 4:解决潜在偏差并确保有效性

“详细说明减轻潜在偏差(选择、测量、响应)和增强研究的内部和外部有效性的步骤。提供提高可靠性和可推广性的策略。“

prompt 5:开发[假设]检验的实验设计

“设计一个实验来检验为[研究问题]制定的假设。指定要考虑的自变量和因变量、控制条件、随机化程序和潜在的混杂变量。”

prompt 6:为[研究问题]调查创建调查工具

“构造详细的调查工具以收集[研究问题]的数据。概述结构、问题类型、回答选项以及您打算使用的任何量表或索引。“

prompt 7:为[参与者组]制定面试协议

“制定与[参与者群体]进行深入访谈的访谈协议。包括从不同角度探讨[研究问题]的开放式和重点问题。”

prompt 8:为[现象]研究设计观察程序

“概述在自然环境中研究[现象]的观察程序。具体说明观察者的角色、数据记录方法以及在保持客观性方面可能遇到的挑战。“

prompt 9:规划纵向研究,探索[研究领域]变化

“为追踪[研究领域]随时间变化的纵向研究提出全面计划。详细说明数据收集点、参与者保留方法和分析技术。“

prompt 10:将伦理考虑纳入研究设计

“描述如何将伦理考虑纳入您的研究设计。解决诸如知情同意、保密性、参与者的潜在风险以及确保伦理合规性的步骤等问题。“

5.数据收集

prompt 1:针对【研究问题】调查进行【调查/问卷调查】

“详细说明管理[调查/问卷调查]以收集有关[研究问题]的数据所涉及的步骤。概述参与者招募过程、调查分发、数据收集以及提高答复率的潜在方法。“

prompt 2:访问[参与者组]以获得深入的[研究领域]见解

“描述从[参与者组]收集有关[研究领域]的深入见解的面试过程。指定招聘策略、面试格式、数据记录方法以及维持融洽关系的潜在技巧。“

prompt 3:利用【观察法】研究【现象】

“解释如何使用[观察方法]来研究[现象]。概述观察设置、观察者角色、数据记录程序以及最小化观察者偏差的策略。“

prompt 4:收集[定量/定性/混合方法]数据进行[假设]检验

“详细说明数据收集过程,以测试与[研究问题]相关的假设。指定要测量的变量、数据源、数据收集工具以及数据收集中的潜在挑战。“

prompt 5:实施[实验/干预]调查[研究领域]

“描述如何进行[实验/干预]以探索[研究领域]。概述参与者随机化、治疗实施、实验期间和之后的数据收集以及控制措施的程序。“

prompt 6:收集[历史/档案/数据集]数据进行[研究问题]分析

“解释收集[历史/档案/数据集]数据以分析[研究问题]的过程。详细说明数据源、数据提取方法、数据清理过程以及确保数据准确性的注意事项。“

prompt 7:使用[案例研究/现场访问]检查[特定上下文]

“概述如何使用[案例研究/现场访问]调查[研究问题]中的[特定背景]。指定案例选择标准、数据收集技术以及访问研究现场时可能遇到的挑战。“

prompt 8:纵向数据收集以研究随时间变化的[趋势/变化]

“详细说明收集纵向数据的计划,以检查与[研究问题]相关的[趋势/变化]。描述数据收集点、保留策略和解决损耗的潜在方法。“

prompt 9:数据收集过程中的伦理考虑

“解释如何将道德考虑纳入数据收集过程。解决诸如知情同意、参与者隐私、数据安全以及与数据收集方法相关的任何潜在风险等问题。“

prompt 10:用于全面了解的三角数据收集方法

“讨论使用多种数据收集方法(如调查、访谈、观察)以确保对[研究问题]有全面的了解。详细说明如何整合和分析来自不同来源的数据。“

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值