DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题

在大语言模型领域的快速发展中,如何有效平衡高效推理和模型思维能力之间的矛盾一直是学术界和工业界关注的重点。DeepSeekV3-0324 默认没有采用深度思考的模式,使得模型推理速度更快,兼顾了快速推理和复杂任务处理之间的平衡。

DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。在此次工作中,我们将 DeepSeekV3-0324 基于快思考的推理能力成功迁移到更轻量的小模型中,全新推出 DistilQwen2.5-DS3-0324。在继承了原始模型思维链蒸馏的精华的同时,引入了快思考策略,显著提升了推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。

实验显示,DistilQwen2.5-DS3-0324 系列模型在多个基准测试中表现突出,其 32B 模型效果甚至接近参数量接近其10倍的闭源大模型。在复杂问题解决方面,也大幅降低了思维链的长度,展示了卓越的效率。DistilQwen2.5-DS3-0324 系列的发布,助力“大模型+快思考”的新模式,逐步成为解决推理难题的标准配置。

img

为方便开发者和企业在实际应用中使用 DistilQwen2.5-DS3-0324 系列模型,已将所有的 Checkpoint 在 Hugging Face 和 Model Scope 开源社区中公开。本文将深入阐述 DistilQwen2.5-DS3-0324 的蒸馏算法、性能评估,并且提供在阿里云人工智能平台 PAI 上的使用指南及相关下载教程。

01

DistilQwen2.5-DS3-0324 中的蒸馏技术

推理模型通过深度思考可以解决复杂的推理任务,但这种深度思考也带来了大规模的计算资源需求。模型思考的过程中一般都有反思机制的参与,其会反复推敲模型已有的推理步骤,确保每个步骤都正确推进。这种反思机制在提高推理准确率的同时,也会不可避免地带来一些重复冗余的部分,导致推理模型所需的计算资源居高不下。因此,取得模型深度思考和快速回答间的平衡显得格外重要。

此外,蒸馏模型的参数量普遍较小。而由于自身参数量的显著差异,大模型与小模型的认知与推理轨迹有时并不完全一致。以数学问题为例:小模型由于自身参数量的限制,会倾向于使用更基础的方法去解决问题。而大模型基于其强大的推理能力,会采用较为高阶的方法。正是由于大小模型的认知轨迹偏差,小模型有时无法有效理解大模型的思维链。如果直接将大模型的思维链全部蒸馏到小模型中,往往无法达到最优效果。

针对这些问题,我们设计了一种小型推理模型蒸馏框架,主要包含2个阶段:快思考 CoT 数据收集,CoT 轨迹认知对齐。该框架可以让模型在快速思考的同时,消除认知轨迹偏差带来的负面影响。我们通过第一阶段收集大模型的快思考数据,在第二阶段对快思考数据进行与小模型的认知能力对齐,最终使用对齐后的快思考 CoT 对 Qwen2.5 系列基座小模型进行监督微调(SFT),得到 DistilQwen2.5-DS3-0324 系列模型。

快思考 CoT 数据收集

模型深度思考和快速回答间的平衡显得格外重要,如果模型的中间思考步骤出现错误,此时的反思机制可以有效帮助模型自查纠错。但如果模型输出的是正确的思考步骤,此时反复的自查思考反而会导致不必要的资源浪费。因此,我们需要一种快思考 CoT,其保留了必要的推理和自查纠错步骤,同时去除了不必要的重复冗余部分。这种快思考 CoT 大幅缩减了推理长度,可以帮助模型进行快速思考和快速回复,在资源受限场景中高效完成任务。我们的快思考 CoT 数据主要来源于:

  • 推理大模型 CoT 数据的 Long To Short 思维链改写。基于 DeepSeek-R1 的推理数据,我们从中提炼关键步骤,生成更高效、简洁的推理路径。
  • 快思考大模型蒸馏。我们认为 DeepSeek-V3-0324 的输出具备快思考的特点,我们从中蒸馏出一些推理轨迹,涵盖数学、代码和科学问题等多个领域。
  • 特别的,针对推理大模型产生的思维链过于冗长的问题,我们进一步使用QwQ-32B 对思维链进行改写,其功能在于精简思维链长度,降低蒸馏模型的输出 token 数量,同时,保证思维链的正确性,避免错误传播到蒸馏模型中。使用大模型进行 Long To Short 思维链改写的 Prompt 如下所示:
You are a helpful assistant who is highly skilled at simplifying reasoning processes.Given a problem, its answer and its reasoning process, your task is to simplify the reasoning process so that a small language model (e.g., a 7B model) can reliably follow the steps to solve the problem. \\If the original reasoning process is divided into multiple steps separated by two newline characters, your output must preserve this formatting. \\You must output ONLY the simplified reasoning process with no additional explanation or commentary.

CoT 轨迹认知对齐

正如上文中提到的,大小模型间的认知推理轨迹有时存在显著偏差。因此,对于待蒸馏的大模型快思考 CoT 数据集,小模型可能无法有效理解全部内容。举例来说,对于计算直角边分别为3和4的三角形面积,大模型可能使用线性代数进行求解:

img

这种方式对小模型而言比较难以学会,其一般采用简单的算术方法求解:

img

因此,直接将大模型的输出蒸馏到小模型容易造成小模型难以拟合的问题。

我们采用了 LLM-as-a-Judge 的范式,对大模型的推理过程进行评价并改进。给定问题、大模型的推理过程和问题的答案,我们使用模型判断这个推理过程是简单、中等还是困难。难度等级的核心标准是小模型是否能够遵循给定的推理过程得到问题的答案。以下是思维链的难度等级及定义:

  • 中等: 小模型可以遵循该推理过程得到问题的答案。
  • 简单: 给定的推理过程过于简单,缺少小模型所需的必要步骤,导致大模型可以依赖其强大的推理能力解决问题,但小模型无法遵循该过程得到答案。
  • 困难:给定的推理过程过于复杂或过于困难,导致小模型无法遵循该过程得到答案。

其中,我们使用如下 Prompt 调用 QwQ-32B 模型进行思维链难度的估计:

You are a highly capable evaluator.Your task is to assess the given reasoning process from the perspective of a small language model (e.g., 7B). Specifically, determine whether the reasoning process provides sufficient detail for a small model to solve the problem, or whether it is too simplistic (i.e., lacking critical details) or too complex (i.e., containing unnecessary or confusing steps). 
Difficulty Definitions (from the perspective of a small model): - Easy: The reasoning process is overly simplistic relative to the problem's difficulty; it omits essential details that a small model needs to solve the problem.- Medium: The reasoning process is appropriately balanced, offering enough detailed guidance.- Hard: The reasoning process is overly complex, with extraneous or convoluted steps that could hinder a small model's ability to follow it. 
Output Format:You must output exactly one word: easy, medium, or hard. Do NOT provide any additional text, explanation.

基于一个大模型的问题与思维链集合,我们可以将其分为简单、中等和困难三类。对于评级为中等的部分,我们予以保留。对于被评为简单和困难的数据,我们使用模型对思维链进行改进。具体来说:对于简单部分,我们扩展其推理过程,直至小模型可以遵循扩展的过程得到答案。对于评级为困难的部分,我们精简其推理过程,直至小模型可以遵循精简的过程得到答案。精简思维链的过程可以参考 Long To Short 的 Prompt 示例。扩展思维链的过程与 Long To Short 相反,其 Prompt 模版如下所示:

You are a helpful assistant who is highly skilled at extending reasoning processes.Given a problem, its answer and its reasoning process, your task is to extend the reasoning process by adding necessary details and intermediate steps so that a small language model (e.g., a 7B model) can follow the extended reasoning process to solve the problem. \\If the original reasoning process is divided into multiple steps separated by two newline characters, your output must preserve this formatting. \\You must output ONLY the extended reasoning process with no additional explanation or commentary.

我们之后对改进结果进行进一步验证,包括:对改进后的思维链再次评价难度等级,检测其是否被归类为中等难度。如果改进后的思维链通过验证,说明改进有效,该数据可以被小模型有效理解,我们将其保留。如果验证不通过,说明改进无效,我们将返回到改进步骤,重新进行改进,直至通过验证。最终,我们获取了优化后的思维链数据集,其组成部分如下:

  • 初始难度评级为中等的数据。
  • 初始难度评级为简单,经过改进扩展后评为中等并通过验证的数据。
  • 初始难度评级为困难,经过改进精简后评为中等并通过验证的数据。

此时,数据集内所有思维链的最终难度评级均为中等,意味着小模型可以有效理解数据集内的所有思维链,并能遵循这些思维链解决相应推理问题。上文提到的大小模型认知轨迹偏差问题在改进后的数据集中得到妥善解决,其可能带来的负面影响也被消除。相关流程如下所示:

img

相关工作参考论文 Training Small Reasoning LLMs with Cognitive Preference Alignment. arXiv。

我们在第二阶段使用这种 CoT 轨迹认知对齐机制对得到的快思考 CoT 数据进行优化,最终使用优化后的数据集对 Qwen2.5 系列基座模型进行监督微调(SFT),得到 DistilQwen2.5-DS3-0324 系列模型。

02

DistilQwen2.5-DS3-0324 模型效果评测

在本节中,我们从多个角度评测 DistilQwen2.5-DS3-0324 系列蒸馏小模型在推理任务上的实际效果;同时,我们将通过统计数据印证 DistilQwen2.5-DS3-0324 系列模型推理的快速性和高效性。

模型综合能力评测

我们在多个模型推理能力评测基准上测试了 DistilQwen2.5-DS3-0324 系列模型的能力,涵盖数学、代码和科学问题三个主流推理领域。

  • 数学领域:采用 AIME2024 和 MATH-500 两个基准。AIME2024 为美国数学邀请赛的2024年测试集,含30道高难题,聚焦代数与几何等复杂推理能力;MATH-500 涵盖500道题,旨在全面考察模型在数学解题上的能力。
  • 代码领域:使用 LiveCodeBench V2,其包含2023年5月-2024年5月的511个代码问题,测试模型在高难度编码、自我修复和执行测试等方面的综合能力。
  • 科学问题领域:使用 GPQA-Diamond 和 MMLU-PRO。前者为高质量专家级科学问题集(共198题),后者涵盖12,000+道题,强调模型的复杂推理能力而非仅靠知识检索,精准追踪大模型在推理任务上的进步和不足。

DistilQwen2.5-DS3-0324 系列模型在7B、14B 和32B 参数量级的模型中,与原始 Qwen2.5 模型的效果进行了对比。可以看出,DistilQwen2.5-DS3-0324 系列模型的推理能力在多个评测基准上取得了一致而明显的效果提升。

img

img

img

>>左右滑动查看7B、14B和32B量级模型效果对比<<

img

DistilQwen2.5-DS3-0324-32B 与当前主流的非推理大模型性能对比

可以看出,尽管这些大模型的参数量是自己的数十倍,DistilQwen2.5-DS3-0324-32B 依旧在这些推理基准上取得了相对不错的结果。其中,DistilQwen2.5-DS3-0324-32B 在 AIME2024 和 MATH-500 两个基准上高于多个闭源大模型(例如 Qwen-Max 和 Claude-Sonnet-3.7),在LiveCodeBench 超过了其他所有大模型,包括其教师模型 DeepSeek-V3-0324。

平衡精度和输出 Token 数量

为展示 DistilQwen2.5-DS3-0324 系列模型高效推理效果,以 32B 模型为例,我们分别统计了 DistilQwen2.5-DS3-0324 模型和 DistilQwen2.5-R1 系列模型在各个推理 benchmark 上输出的平均 token 数。可以看出,相较于采用深度思考进行推理的模型,DistilQwen2.5-DS3-0324 系列模型推理输出的token数量大幅降低,与 DeepSeek-V3-0324(teacher model)的输出 Token 数相当,兼顾了快速推理和复杂任务处理。这种快思考的特点使得 DistilQwen2.5-DS3-0324 系列模型在资源受限的设备和边缘计算场景中依旧能高效解决复杂推理任务。

img

模型输出案例

我们在此列举一些有趣的小例子,以体现 DistilQwen2.5-DS3-0324 系列模型强大的代码能力。以下 case 均为 DistilQwen2.5-DS3-0324-32B 输出结果。为便于复现,我们还提供了不同 case 对应的 prompt。将 prompt 对应的模型输出代码保存到本地 html 文件中,使用浏览器打开 html 文件即可复现类似结果。

示例一:前端网页生成

img

Prompt:Create a detailed web page for a new SAAS with all the necessary information images and pricing and all, give me the code so that I can test locally using vscode.

示例二:贪吃蛇游戏

img

Prompt: Develop an interactive version of the classic Snake game in a single HTML file using HTML, inline CSS, and inline JavaScript. The game must include responsive controls, dynamic score tracking, and a game-over screen with a restart option. Use proper image assets for the snake and food items (no placeholders) so that the entire game is self-contained.

03

模型下载和使用

DistilQwen2.5-DS3-0324在阿里云人工智能平台 PAI 上的实践

以下 HuggingFace transformers 库为例,简要介绍如何在 PAI-DSW 上使用 DistilQwen2.5-DS3-0324模型。首先需要保证 PAI-DSW 镜像内transformers 版本大于等于4.37.0,否则会在加载模型时报错:

KeyError: 'qwen2'

以 DistilQwen2.5-DS3-0324-7B 为例,我们可以使用如下代码调用模型:

from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "alibaba-pai/DistilQwen2.5-DS3-0324-7B"
model = AutoModelForCausalLM.from_pretrained(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "xxxxx"messages=[    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant. You should think step-by-step."},    {"role": "user", "content": prompt},]text = tokenizer.apply_chat_template(    messages,    tokenize=False,    add_generation_prompt=True)model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(    **model_inputs,    max_new_tokens=2048)generated_ids = [    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]print(response)

DistilQwen2.5-DS3-0324在开源社区的下载

我们在 Hugging Face 和 Model Scope 上开源了我们蒸馏后的模型,分别为 DistilQwen2.5-DS3-0324-7B**、DistilQwen2.5-DS3-0324-14B、**DistilQwen2.5-DS3-0324-32B。以 Hugging Face 为例,用户可以使用如下代码下载这两个模型:

from huggingface_hub import snapshot_download
model_name = "alibaba-pai/DistilQwen2.5-DS3-0324-7B"snapshot_download(repo_id=model_name, cache_dir="./DistilQwen2.5-DS3-0324-7B/")
model_name = "alibaba-pai/DistilQwen2.5-DS3-0324-14B"snapshot_download(repo_id=model_name, cache_dir="./DistilQwen2.5-DS3-0324-14B/")
model_name = "alibaba-pai/DistilQwen2.5-DS3-0324-32B"snapshot_download(repo_id=model_name, cache_dir="./DistilQwen2.5-DS3-0324-32B/")

https://huggingface.co/alibaba-pai/DistilQwen2.5-DS3-0324-7B

https://huggingface.co/alibaba-pai/DistilQwen2.5-DS3-0324-14B

https://huggingface.co/alibaba-pai/DistilQwen2.5-DS3-0324-32B

04

小结与未来工作

综上所述,DistilQwen2.5-DS3-0324 系列模型通过知识蒸馏快思考策略,实现了在资源受限环境中的高效推理,兼顾了快速推理和处理复杂任务的需求。这一系列模型在多个基准测试中表现优异,证明了其卓越的推理能力和实际应用价值。作为“大模型+快思考”新模式的经典案例,DistilQwen2.5-DS3-0324 系列为小模型的广泛应用提供了巨大的空间。未来,我们将继续优化和提升 DistilQwen 系列模型的蒸馏技术,以进一步增强小模型的智能水平和推理效率,推广更多高效、轻量化的语言模型,支持开发者和企业在实际应用中的广泛采用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值