一、引言
又是一年毕业季。
初入社会的应届生们可能已经开始了海投工程。
错过金三银四,又要和众多应届生激烈竞争的职场人,为了寻找新的工作机会,还在苦苦等待一个面试电话。
我身边有一个朋友,迫于个人选择,他在家待业已经快半年了,投了 1000 次简历,面试却不过 20 场。
他告诉我,他甚至考虑接受降薪 60% 的岗位,太疯狂了。
录用不录用先搁在一边,能不能有个面试机会?
到底什么原因造成我们的简历不过关呢?看看你有没有中招:
1、大学生没有实习经验、没有奖项,没有东西可写。
2、人岗不匹配,一份简历,疯狂海投。
想要获得面试机会,我们得做到知己知彼,今天我们一起来看看:
1、什么人需要简历优化?
2、为什么要优化简历?
3、如何优化你的简历?
4、如何借助 AI 获得简历优化的建议。
二、什么人需要简历优化?
简历投出去,收不到回复:像最开头我提到的朋友,自从尝试利用我的方法优化自己的简历后,场次没有提升多少,但是心仪的两家公司都为他发出了面试邀请,并拿到了一份 Offer。
简历没有亮点,没有经验的应届生。作为刚入职场的新人,缺乏经验是普遍现象,如果没有足够亮点的奖项和经历,基本上没什么可写了,但真的就什么都不写吗?那肯定不行。
存在空窗期和大量短期工作经验。这种情况,会让企业怀疑这段时间内发生了什么,或者担心你的专业技能是否已经过时。而过于频繁跳槽的朋友,也会让企业质疑你的稳定性和忠诚度。
三、为什么要优化简历?
这个问题看起来有点多余,当然是提高面试邀约率啦。
那到底是为什么呢?
前面我们提到"什么人需要简历优化?", 我们可以发现这三种情况下,都存在一些非常明显的问题。
优化简历并不是为了弄虚作假,而是尽量避开弱点,结合一些关键技巧,让自身的优势最大化,从而增加简历投递的通过率。
四、如何优化你的简历?
说到这里,我们要弄明白 HR 筛选简历时, 他们到底关注哪些方面,我们先简单了解下 HR 的简历筛选流程:
第一步:快速筛查
通常有两种方式,第一种是自动筛选、手动挑选。
自动筛选:很多企业直接使用智联、前程等招聘平台的搜索引擎,除此之外,大型企业会用申请人跟踪系统(ATS)来处理简历。
手动挑选是另外一种方式,因为要手动挑选,所以 HR 通常只花几秒钟时间快速看一眼简历。
这一步主要是根据简历里关键词来挑选合适的简历。
所以,让简历一目了然、信息醒目是很重要的。
第二步:仔细审查
那些看起来符合要求的简历会进入下一轮,HR 会仔细阅读这些简历,看看面试者的经历和技能是否真的适合这个职位。
其中,HR 会特别关注你的工作经历、学历、你的成就和你展示的技能。
第三步:背景核查和初步交流
当经过前两步后,HR 将会对于面试者的情况做个简单的电话沟通,确认面试者是否对于企业岗位的兴趣,以及面试者的状况和背景。
接下来才会安排多轮面试,最终由企业决定是否录用。
如果我们要优化简历,最终目的就是要有效通过第一步和第二步的检查。
抓住 HR 的眼球,从而获取第三步面试邀约的机会。
和几位资深的 HR 沟通过之后,我总结出以下优化简历的方向:
一)模板和证件照
1、模板挑选要简洁,不要花里胡哨的,否则当简历内容多的话,改起来很难受。推荐使用简历本网站,有很多精美的简历模板,在线修改也很方便。
地址:https://www.jianliben.com/?bp=U2lz4u
2、证件照,可以用积极阳光的半身照作为证件照,最好是用相对正式的风格,千万不要过于随意。留给 HR 的第一印象和重要。
二)工作经历
1、工作经历中采用职责、业绩描述的方式来体现。
2、职责部分需要高度总结工作内容。业绩中善用 STAR 法则,用数字规模、可量化的结果展示业绩。比如 ”销售额比上一季度季度提升 5% “、”组织过 100 人的行业会议“等等。
3、不同岗位侧重点不一样:
执行层岗位需要体现工作技能、技巧、如何达成业务 KPI;
管理岗位需要体现团队 KPI,如何管理和影响团队;
决策岗位侧重于如何考虑公司的价值及在市场的影响,如何做出正确的决策,如何考虑业务发展的方向。
需要注意的是,如果管理岗的简历中体现的却是一些按部就班、执行层的工作,那样无法打动用人单位给你开出管理岗位的薪资。
4、如果是没有足够亮点经历和奖项的应届生,我们可以强调个人的实用技能,以及软技能,比如沟通能力、组织能力等等,让企业看到你的一些潜力。
5、对于存在空窗期的朋友,合理解释空窗期的原因,如果可以体现自己在空窗期内学习和探索的心态,将起到非常重要的作用。
三)人岗匹配
这一步我认为是最重要的。不管你有多优秀,如果不匹配,就是白搭。
不要海投,在投递心仪企业的岗位时,最好有对应岗位相关的专业术语。
不同公司的要求和工作的内容是截然不同的。需要根据不同企业的岗位要求,判断出什么少写,什么不写。
这样才能更有效通过 HR 的简历筛选。
那该怎么进行人岗匹配呢?借助 Kimi,我们可以得到更多的优化建议。
五、利用 AI 获得简历优化建议
提示词:
# Role: 简历优化助手 # Profile - Author: 熊猫Jay - Version: 2.0 - Language: 中文/英文 - Description: 根据用户提供的行业、岗位、现有的简历,以及心仪公司的招聘要求,生成简历优化建议。 ## Background 用户需要根据特定的行业、岗位和公司要求优化其简历,以提升被录用的机会。用户提供的信息包括行业、岗位,以及公司的招聘要求。 ## Goals 生成针对用户所提供的行业、岗位和公司招聘要求的简历优化建议,包括如何突出关键技能、调整工作经历描述,以及强化简历的整体吸引力。 ## Constrains 1. 提供的优化建议必须与用户的应聘职位和公司的要求高度相关。 2. 避免使用通用或模糊的优化建议,确保内容针对性强。 3. 不要篡改用户的简历,不要增加用户没有的技能和经历。 4. 每次只询问一个问题。 ## Skills 1. 对不同行业的趋势和发展有一定的了解,能够提供符合当前市场需求的建议。 2. 能够理解简历内容和岗位描述中不同行业术语和专业背景。分析用户简历和目标岗位之间的匹配度,包括识别技能差距、经验相关性和关键字匹配,并转化为具体的简历优化建议。 3. 了解 ATS(申请人跟踪系统)系统的工作原理,提供针对性建议,用于突出简历中的关键点以吸引招聘者,帮助招聘者通过 ATS 的筛查。 4. 善于利用 STAR 法则将工作成就和经验转化为具体的数据和指标,突出用户的能力。 ## Output Format ```## 简历亮点 ## 简历存在问题 ## 关键词优化建议 分析目标岗位要求和现有简历的差异,提供关键字优化建议帮助用户通过 ATS 筛选。 ## 职业规划建议 分析目标岗位所处的行业,判断目标岗位和现有能力的差异,提供学习计划的建议。 ## 其他建议 - 提供包含工作经历描述、个人总结、简历格式和风格的建议。 - 如果原始简历中存在业绩和成就,建议使用 STAR 法则进行优化,并给出优化效果的举例说明。 ```## Workflow 1. 逐步执行以下任务。 2. 分析用户提供的简历、目标岗位和行位,按照<Output Format>进行输出。 ## Initialization 以"您好,我是您的简历优化助手,请提供您现有的简历、目标岗位要求和行业,我帮助您开始优化简历"向用户问好,并根据<Role>严格按照<Workflow>开始执行。
1、打开 Kimi,初始化提示词后,提供现有简历、目标岗位要求和行业信息。
2、得到优化建议。
在分析张三的简历时,我们发现了一些短板,比如他缺乏微服务开发的经验,同时也缺少前端技术的能力。我们还需要将他的项目经验转化为具体的数字成果,这样更直观。
另外,我们还得到了一些职场规划的建议,比如用 STAR 法则 来优化项目经验的描述,让它们看起来更有说服力。
我之前提到过,优化简历不等于夸大其词,关键是要突出那些关键词,这样才能得到面试的机会。
如果简历里确实漏掉了一些重要内容,我们得赶紧补充。
如果目前找工作不是那么着急,可以利用这段时间来提升自己。
虽然做不到精通某些技能,但是认真学习并且实践后,写“了解”或“熟悉”这类词汇,一点问题也没有。
最重要的是要诚实面对自己,不要自欺欺人。
如果你对职场提效感兴趣,进入公众号,回复 提示词, 可免费领取更多实用 职场提效的提示词资料 !!!
六、总结
如果你还在为一份工作,为一次面试机会而发愁。长时间的等待,的确会逐渐侵蚀我们的耐心和信心。
我想提醒大家,我们的心态很重要,大环境的供求不平衡是个不争的事实,找不到工作,没有面试机会,不一定就是我们的问题。
大厂不行我们就去中厂,中厂没机会我们就去小厂,机会总会存在。
有句话说得好:简历做得好,大厂把我找。
人生还很长,千万不要摆烂,动起来,先从优化自己的简历开始 ~
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。