你是否想过开发一个专属AI助手,却总被代码劝退?如果只是通过“搭积木”般的操作,就能快速创建智能客服、政策解读助手甚至营销文案生成器那该多好呀!无论是企业降本增效,还是个人提升效率,这篇文章带你用最朴实的案例,揭开AI应用开发的神秘面纱。
一、什么是智能体?对话式AI的“灵魂”
智能体(Agent)是AI领域的热门概念,简单来说,它是基于大语言模型(LLM)的对话式AI程序,能够通过自然语言与用户交互,并调用插件或执行工作流完成复杂任务。例如:
- 智能客服:自动回答用户咨询;
- 虚拟助手:帮你规划行程、整理会议纪要;
- 行业专家:分析金融政策、生成法律文书等。
二、智能体搭建的三种模式
我们以COZE扣子为例,平台提供三种智能体开发模式,适应不同场景需求:
- 单Agent(LLM模式)
-
定义:仅依赖一个大语言模型处理简单问答,适合轻量级任务。
-
适用场景:
-
- 资讯摘要:输入文章链接,自动生成摘要;
- 文案生成:根据用户需求生成朋友圈文案、广告语。
-
案例:某电商用LLM模式搭建“促销文案生成器”,输入商品特点,3秒输出10条备选文案。
2. 单Agent(工作流模式)
-
定义:通过“拖拽式”工作流串联多个步骤,处理复杂逻辑。
-
适用场景:
-
- 行业报告生成:自动抓取数据→分析趋势→生成PPT;
- 客户服务:用户提问→检索知识库→调用API查询订单→发送结果。
-
案例:某旅游博主用工作流模式搭建“行程规划助手”,用户输入目的地,自动推荐景点、酒店并生成预算表。
3. 多Agents模式
-
定义:多个智能体协作分工,适合超复杂任务。
-
适用场景:
-
- 企业级应用:客服Agent解答问题→销售Agent推荐产品→售后Agent跟进反馈;
- 教育领域:教师Agent设计课程→学生Agent模拟互动→评测Agent生成学习报告。
-
案例:某教育机构用多Agents搭建“AI助教系统”,实现课程设计、学生答疑、作业批改全流程自动化。
三、智能体搭建实战框架
案例:网页速览精灵
- 目标:每天在各种微信群、公众号都会收到很多资讯内容,有的文章精品但内容很长阅读很耗时、还不容易抓住重点,有的文章点击去读到一半才发现是水文。我们可以做一个信息漏筛器,针对繁多的网页链接,精准提炼网页内容,帮助用户快速get文章要点。
- 搭建步骤:
- Step 1 创建智能体:登录COZE平台,选择“单Agent(LLM模式)”。
-
Step 2 智能体Prompt:设置智能体人设与回复逻辑
常用提示词框架为定义智能体角色、技能、限制;大模型可以选择豆包.工具调用(doubao-pro-32k模型+functioncall),通过该集成的大模型可以按提示词调用不同的技能,支持的技能包括各种插件、工作流、触发器、知识库、记忆设置等。以下是提示词示例,也可以使用AI优化提示词:
-
Step 3 添加工作流:
案例中我们仅使用到工作流(将三方插件、大模型当成每个节点,用流程编排方式完成业务流向,适用于较复杂或者需要混合调用插件、不同大模型等场景)。
该工作流主要是在流程中调用读取网页内容插件,将文本传递给大模型节点来提炼标题、总结、关键信息点,并输出。
例如在“文章提炼”节点,选择大模型后,需要输入系统提示词,也就是该节点选择的大模型对应的提示词,如设定人设和回复逻辑。创建完成、试运行成功后即可发布工作流,并添加到智能体中。
-
Step 4 测试与发布:在预览界面模拟用户提问,优化回答逻辑后发布到对应渠道。
发布平台支持微信、抖音、飞书、以及api模式等,“网页速览精灵”我们发布到公众号上,可以选择微信订阅号授权,配置对应的appid,选择发布即可,这样就可以在公众号消息对话中输入网页链接,生成总结后的内容了。
以下为发布到公众号后,通过消息会话模式,把网页链接输入,自动调智能体实现总 结内容输出:
四、什么是应用?智能体的“高阶形态”
应用是智能体的升级版,通常由多个智能体+工作流+数据库组成,具备完整业务逻辑,适用于搭建包含用户界面的完整应用。例如:
- 电商营销系统:用户画像分析→促销文案生成→订单跟踪;
- 企业内部管理系统:会议纪要生成→任务分配→进度提醒。
与智能体相比,应用更强调功能闭环与多端协同,适合企业级复杂需求。
五、应用搭建实战框架
案例:ZapFind
- 目标:智能搜索工具,精准理解您的需求,快速扫描海量信息,智能筛选并呈现最匹配结果,让搜索高效便捷,信息获取一步到位。
- 搭建步骤:
应用搭建分为业务逻辑和用户界面,其中业务逻辑包括工作流设置、插件、数据库设置;用户界面则是搭建用户操作界面端,我们可以按以下步骤快速搭建智能体应用。
-
Step 1 确定功能模块:
输入搜索关键词–搜索词拆解–搜索–链接读取–总结
-
Step 2 设计工作流:
分为3个工作流:分别是默认问题生成、存储搜索记录、核心搜索流程
Default_suggestion工作流用于生成主界面的四个推荐问题。
Load_webs工作流用于跨界面存储主界面的用户的搜索网站记录,拖延时间节点是为了构建数据存储、读取的时间差,使得数据能在结果页上面正确展示。
Search工作流为基础核心搜索流程,分为搜索词拆解、搜索、链接读取、总结四个阶段。
-
Step 3 设计数据表:
由于涉及到用户搜索数据存储,需要有数据表来承载储存,其中links、names也就是搜索链接、链接名称,是新增字段,其余字段是库表默认字段,可以不做改动。
-
Step 4 搭建用户界面:
用户界面创建时,需要选择是移动端还是web端,zapfind我们搭建为移动端模式,快捷发布成微信小程序,支持用户在小程序上使用。
针对页面或按钮的事件需要按照业务逻辑进行设置,例如“开始搜索”按钮对应的事件配置为当用户点击时调用工作流search,并且执行页面跳转到结果搜索页,同时调用工作流load_webs调用数据库,反显结果页中的搜索来源。
-
Step5 测试与优化:
监控推送稳定性,并选择发布到微信小程序,这样小程序的前端界面、后端接口调用及数据库都通过智能体应用一站式搭建完成。
以下是发布后小程序页面交互:
结语:AI时代,每个人都是“创造者”
COZE扣子、Dify等AI开发平台的出现,无论是个人爱好者还是企业团队,只需明确需求、选择合适模式,即可快速打造专属AI应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。