ClinicalAgent:基于大型语言模型的临床试验多代理系统

链接:https://arxiv.org/abs/2404.14777v2

原标题:ClinicalAgent: Clinical Trial Multi-Agent System with Large Language Model-based Reasoning

研究背景

  1. 研究问题:这篇文章要解决的问题是如何在临床试验应用中利用大型语言模型(LLMs)和多代理系统,以克服其在外部知识获取方面的限制。

  2. 研究难点:该问题的研究难点包括:LLMs在访问和整合外部知识源(如DrugBank)方面的能力有限;如何在临床试验中有效地利用LLMs进行复杂的推理和分析。

  3. 相关工作:该问题的研究相关工作包括:LLMs在医疗领域的应用,如诊断、患者沟通和医学研究;AI在临床试验中的应用,如预测试验持续时间、估计患者脱落率等。然而,这些研究大多仅关注对话技能,忽略了可操作的智能和全面的推理。

研究方法

这篇论文提出了ClinicalAgent,一种用于临床试验任务的多代理系统,结合了GPT-4、多代理架构、LEAST-TO-MOST和ReAct推理技术。具体来说,

多代理架构:ClinicalAgent框架中的每个代理扮演不同的角色,类似于医院中各种专业的分工。例如,规划代理负责分解复杂问题,效能代理评估药物的有效性,安全代理评估药物的安全性,招募代理处理患者招募的难度。

LEAST-TO-MOST推理:规划代理使用LEAST-TO-MOST方法将复杂问题分解为更小、更易于管理的子问题。这种方法确保基础元素被彻底理解后再解决更复杂的问题。

ReAct推理:ReAct推理强调识别模式或线索(识别)、制定和执行行动方案(行动)以及仔细考虑周围环境(上下文)。这种方法使代理能够迅速做出明智和精确的决策。

外部工具调用:系统集成了多种外部数据源和预测AI模型,如DrugBank、HetioNet和ClinicalTrials.gov。这些工具增强了代理的功能,使其能够进行更全面的数据分析和推理。

实验设计

实验设计包括以下几个方面:

  1. 数据收集:从提供的临床试验结果预测基准中随机选择40个训练样本和40个测试样本。

  2. 实验环境:实验在一台配备AMD Ryzen 9 3950X CPU、64GB RAM和NVIDIA RTX 3080 Ti GPU的服务器上进行,使用Python 3.8进行脚本编写和PyTorch进行模型实现和训练。

  3. 基线方法:选择了几种基线方法进行比较,包括梯度提升决策树(GBDT)、分层注意力变压器(HAtten)和标准提示(GPT-4)。

  4. 参数配置:在实验过程中,使用了相同的种子以确保可重复性。

结果与分析

  1. 总体性能:ClinicalAgent在ROC-AUC评分上达到了0.8347,超过了其他所有比较方法,包括GBDT和HAtten。与标准提示方法相比,ClinicalAgent在所有六个评估指标上都有显著改进。

  2. 案例研究:通过对一个真实的临床试验案例(NCTID: NCT00311402)进行分析,展示了ClinicalAgent在预测临床试验结果方面的能力。该案例中,ClinicalAgent成功预测了试验失败的可能性。

  3. 消融研究

  • 不同版本的GPT:GPT-4在大多数评估指标上优于GPT-3.5,表明更先进的大型语言模型在临床试验结果预测中具有潜在优势。

  • 少样本学习的影响:虽然少样本学习的模型在准确率和F1评分上略逊于不使用的模型,但在ROC-AUC和PR-AUC方面表现更优,表明少样本学习显著提高了模型的准确分类能力。

总体结论

这篇论文提出了ClinicalAgent,一种结合LLMs和多代理系统的临床多代理系统,通过LEAST-TO-MOST和ReAct推理技术显著提升了LLMs在临床环境中的性能。实验结果表明,ClinicalAgent在临床试验结果预测方面具有显著的竞争优势,特别是在ROC-AUC和PR-AUC指标上。该研究不仅展示了AI在临床试验中的潜力,还为未来的研究和应用提供了新的方向。

论文评价

优点与创新
  1. 多代理框架:提出了临床试验多代理系统(ClinicalAgent),首次将大型语言模型(LLMs)的对话能力与可操作智能结合。

  2. 工具集成与高级推理技术:集成了广泛的工具和知识,并使用了先进的推理技术如ReAct和LEAST-TO-MOST,增强了系统的决策能力。

  3. 预测性能:在临床试验结果预测中取得了具有竞争力的表现(0.7908 PR-AUC),比标准提示方法提高了0.3326。

  4. 结构化工作流程:设计了结构化的工作流程,优化了多个专业代理的协作和效率,能够处理复杂的医学查询。

  5. 外部工具调用:利用GPT-4的API自动检测并使用外部工具,增强了系统获取外部知识的能力。

  6. 案例研究:通过真实案例展示了ClinicalAgent的应用,证明了其在复杂临床试验推理问题中的有效性。

不足与反思
  1. 依赖人工干预:系统仍然显著依赖于人工设计和配置,这在动态环境中限制了系统的可扩展性和适应性。

  2. 机器学习技术的整合:未来研究可以专注于整合机器学习技术,使ClinicalAgent能够从交互中学习并自动更新其解决问题的策略,减少对频繁人工监督和设计的需求。

关键问题及回答

问题1:ClinicalAgent系统是如何利用LEAST-TO-MOST和ReAct推理技术的?

  1. LEAST-TO-MOST推理:LEAST-TO-MOST方法采用分层递归的方式将复杂问题分解为更小、更易于管理的子问题。具体来说,规划代理首先将用户问题分解为若干个子问题,然后将这些子问题分配给相应的专门代理(如效能代理、安全代理和招募代理)。每个专门代理独立处理其分配的任务,并将结果返回给规划代理进行综合。

  2. ReAct推理:ReAct推理强调识别模式或线索(识别)、制定和执行行动方案(行动)以及仔细考虑周围环境(上下文)。在ClinicalAgent系统中,ReAct推理应用于每个专门代理的处理过程中。例如,当效能代理评估药物的有效性时,它会识别相关的生物医学数据和临床试验结果,制定相应的行动方案(如检索DrugBank和HetioNet数据库),并根据这些信息调整其推理过程。

通过结合LEAST-TO-MOST和ReAct推理技术,ClinicalAgent系统能够系统地分解问题、执行具体的任务和动态调整推理策略,从而提高其在复杂临床环境中的决策能力。

问题2:在实验设计中,ClinicalAgent系统如何验证其性能,并与基线方法进行比较?

  1. 数据收集:从提供的临床试验结果预测基准中随机选择40个训练样本和40个测试样本。

  2. 实验环境:实验在一台配备AMD Ryzen 9 3950X CPU、64GB RAM和NVIDIA RTX 3080 Ti GPU的服务器上进行,使用Python 3.8进行脚本编写和PyTorch进行模型实现和训练。

  3. 基线方法:选择了几种基线方法进行比较,包括梯度提升决策树(GBDT)、分层注意力变压器(HAtten)和标准提示(GPT-4)。

  4. 参数配置:在实验过程中,使用了相同的种子以确保可重复性。

  5. 评估指标:使用了多个评估指标来衡量ClinicalAgent的性能,包括准确性(Accuracy)、ROC-AUC、PR-AUC、精确率(Precision)、召回率(Recall)和F1分数(F1)。

通过这些设置,ClinicalAgent系统能够在与基线方法的对比中展示其优越性。实验结果表明,ClinicalAgent在ROC-AUC评分上达到了0.8347,超过了其他所有比较方法,包括GBDT和HAtten。与标准提示方法相比,ClinicalAgent在所有六个评估指标上都有显著改进。

问题3:ClinicalAgent系统在处理临床试验任务时,各个代理的具体职责是什么?

  1. 规划代理:负责将复杂问题分解为更小的子问题,并分配给相应的专门代理。它使用LEAST-TO-MOST方法进行问题分解,并通过几例学习技术来增强其任务分解能力。

  2. 效能代理:专注于评估药物的有效性。它利用先进的数据检索和分析技术,从DrugBank和HetioNet等生物医学数据库中获取详细的药物和疾病信息,并进行药物-疾病相互作用路径的映射和效能评估。

  3. 安全代理:专注于评估药物的安全性及其对患者健康的潜在影响。它利用药理数据和历史临床试验结果来评估药物的安全性,并提供详细的安全档案和历史失败率分析。

  4. 招募代理:处理患者招募的难度。它设计了一个基于层次变换器的模型,输入资格标准并预测招募成功率。这个模型帮助规划和调整临床试验的招募策略。

通过这些专门代理的分工合作,ClinicalAgent系统能够全面处理临床试验中的复杂任务,提供精确和可解释的解决方案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值