什么是MCP?
MCP协议(模型上下文协议)是由Anthropic提出的AI集成开放标准,旨在解决AI工具集成中的"M×N问题"。简而言之,它就像AI领域的USB接口,为各种外部工具、数据源和系统提供标准化连接方案。
本地MCP服务开发:扑克牌发牌小工具
Python编写发牌员MCP工具
- 安装mcp包
pip install mcp
- 撰写一个简单的发牌代码😊
mcp = FastMCP(
name="Demo 🚀",
port=8090
)
@mcp.tool()
def get_poker_cards(num: int = 5) -> str:
# 定义花色和牌面
suits = ['♠', '♥', '♦', '♣']
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']
# 创建一副牌
deck = [f"{suit}{rank}"for suit in suits for rank in ranks]
# 随机抽取n张牌
random_cards = random.sample(deck, num)
return",".join(random_cards)
Cherry Studio测试MCP服务
打开Cherry Studio
客户端,下载地址大家可以自行百度。
- 在 设置 > MCP服务器 -> 添加服务器 -> 点击保存。服务器的参数进行如下配置:
MCP服务器参数配置
- 在聊天界面中进行测试,观察是否能成功调用我们写的发牌员MCP工具。
聊天界面中测试发牌员MCP工具
看样子,测试通过了!我们的大模型成功唤起了发牌员MCP工具,并获取到了要发的10张牌。
通过Docker部署发牌员MCP服务
- 编写Dockerfile,将需要用到的环境以及发布的端口都配置好(文件内容较长,仅摘录部分内容)
COPY requirements.txt .
RUN python -m venv /app/venv && \
. /app/venv/bin/activate && \
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
FROM base AS prod
COPY --from=build /app/venv /app/venv
COPY app.py /app/app.py
EXPOSE 8090
CMD ["/app/venv/bin/python", "app.py"]
-
将Dockerfile以及上述的发牌员MCP的Python代码,一同打包,上传到服务器
-
制作docker镜像
cd /yourproject__path/
docker build -t mcpserver:v0.1 .
- 启动容器运行发牌员MCP服务
docker run -d -p 8090:8090 --network docker_ssrf_proxy_network --name mcpserver mcpserver:v0.1
- 在dify的插件容器中测试以下,能否访问我们的MCP服务
docker exec -it docker-plugin_daemon-1 bash
curl http://mcpserver:8090/sse
终端中输出:
测试dify容器间网络通信
看样子,测试又通过了!我们已经在dify的服务器上部署好我么你的发牌员MCP工具了。
在dify中使用MCP
dify基本配置
本文用到的dify版本为1.1.3,需要在插件市场安装以下4个插件
- Dify Agent 策略
- MCP Agent 策略
- Agent 策略(支持 MCP 工具)
- MCP SSE
创建工作流进行测试
- 创建一个带MCP工具的AGENT节点的工作流
创建dify工作流
- 其中在AGENT节点中,配置我们部署的发牌员MCP工具
Agent节点配置MCP信息及大模型提示词
- 在预览里测试一下效果
预览效果
- 追踪AGENT节点的详细工作信息,确认大模型确实调用了发牌员MCP工具,而不是大模型自己生成的。
查看Agent节点中MCP服务的调用情况
看样子,大模型确实调用了发牌员MCP工具,并成功拿到了工具返回的结果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。