智能体爆火,MCP、A2A、ANP 与函数调用才是关键

每天刷新闻,AI智能体的新闻层出不穷。

AI 已经从简单的语言模型演化为能感知、决策、行动的多模态智能体。

这些智能体不仅能获取实时信息,还能跨平台协作,甚至构建去中心化的智能网络。

到底是什么让这些AI智能体如此强大?

背后的核心技术又是什么?作为普通人,我们该如何把握住AI智能体浪潮?

这一切背后,离不开四大技术的支撑:MCP、A2A、ANP以及函数调用。

今天,就通俗易懂地讲讲,这些关键技术是如何重塑AI的。

MCP:AI的“万能接口”

MCP,全称模型上下文协议,就像AI界的USB接口,打破了AI与外部数据间的壁垒,能接入各种平台。

从百度、高德到京东、淘宝,甚至公司内部数据库。

AI(客户端)通过标准的HTTP请求,服务器实时响应,让AI随时获取最新数据。

MCP的出现,让AI真正融入实时世界,变得更加高效、灵活。

image.png

A2A:智能体间的“通用语言”

A2A到底是什么?

智能体到智能体的通信协议,类似AI世界的普通话,帮助不同平台的智能体标准化交流。

基于HTTP和JSON标准,实现能力发现、任务协调、上下文共享,无需复杂开发即可直接沟通。

A2A的存在,让AI协作跨越平台,打破了过去的技术鸿沟。

image.png

ANP:智能体的“去中心化网络”

ANP是什么?

智能体网络协议,一个去中心化的通信框架,采用点对点技术,无需中央服务器,类似AI世界的“区块链”。

智能体直接通信,无需中介,基于去中心化标识(DID)进行身份验证,数据自由流动且安全。

ANP开创了一个无需中心控制、灵活高效的AI协作新时代。

image.png

函数调用:AI的“超级工具”

什么是函数调用(Function call)?

AI能够调用外部API执行实际任务,从“只会说话”变为“会做事”,如查询数据库、查询实时天气。

用户输入请求,AI理解后调用外部函数或API,实时返回具体操作结果。

函数调用让AI不再只是知识储备,而成为能主动完成具体任务的行动家。

image.png

四大技术,各有分工

  • MCP:基础设施,让AI能实时接入外部信息。
  • A2A:沟通桥梁,让不同智能体无障碍协作。
  • ANP:未来趋势,构建去中心化AI网络。
  • 函数调用:实操工具,让AI能够直接完成任务。

MCP、A2A、ANP与函数调用,正联手开创一个更智能、更高效的AI新时代。

这些技术不仅让AI突破信息孤岛,更让它们能够自主协作,创造巨大商业价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,用户想找关于如何使用MCP调用工具来开发智能体的教程。首先,我需要确认MCP的具体信息。根据用户提供的引用,MCP是对标Anthropic的开源智能体通信协议,支持去中心化身份认证和数据通信[^1]。接下来,我得考虑用户可能的背景,可能是开发者或技术爱好者,需要具体的步骤和资源。 用户的需求明确,需要教程,但可能缺乏相关的中文资料。我应该先检查是否有官方文档或开源仓库,比如GitHub,通常这些地方会有入门指南和示例。另外,可能需要分步骤说明,比如环境配置、协议集成、工具调用、协作开发等。 还要考虑用户可能遇到的问题,比如环境搭建的困难,代码示例的缺失,或者如何测试智能体通信。需要确保回答中包含这些方面的指导,并推荐社区或论坛作为进一步支持的资源。 最后,生成相关问题时要围绕MCP的应用和开发,比如工具调用机制、身份认证实现、性能优化等,帮助用户深入理解。</think>### MCP调用工具开发智能体教程 MCP(Multi-Agent Communication Protocol)作为开源智能体通信协议,支持去中心化身份认证数据通信,其工具调用开发流程可分为以下步骤: 1. **环境配置** - 安装Python 3.8+环境 - 克隆官方仓库:`git clone https://github.com/mcp-framework/mcp-core` - 安装依赖:`pip install mcp-toolkit` 2. **协议集成** ```python from mcp import AgentNode, ToolRegistry class MyAgent(AgentNode): def __init__(self): self.tools = ToolRegistry() self.register_tool("data_parser", self.parse_data) def parse_data(self, input_json): # 工具方法实现 return processed_data ``` 3. **工具调用** ```python # 跨智能体工具调用示例 response = self.request_tool( target_agent="data_processor@network1", tool_name="data_encoder", params={"raw_data": sensor_data}, timeout=5000 ) ``` 4. **协作开发** - 使用`MCP-SIM`模拟器构建测试网络 - 通过`mcp-cli`命令行工具监控通信流量 - 配置文件采用YAML格式定义网络拓扑
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值