CoALA:为AI注入人类思维,语言agent迎来认知革命 | LLaMA-Berry:AI挑战奥数难题,数学推理能力再升级

大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:

1、CoALA:为AI注入人类思维,语言agent迎来认知革命

2、LLaMA-Berry:AI挑战奥数难题,数学推理能力再升级

下面是这两篇论文的简单介绍:

1、CoALA:为AI注入人类思维,语言agent迎来认知革命

论文标题:Cognitive Architectures for Language Agents

论文链接:https://arxiv.org/abs/2309.02427

在人工智能的浩瀚宇宙中,语言agent正如一颗冉冉升起的新星,它们将大型语言模型(LLMs)的强大能力与传统智能agent设计相结合,开创了一个全新的AI前沿。然而,随着这些agent变得越来越复杂,研究者们面临着一个棘手的问题:如何系统地理解、比较和设计这些高级AI系统?

为了应对这一挑战,研究者们提出了一个名为CoALA(Cognitive Architectures for Language Agents)的概念框架。这个框架巧妙地借鉴了计算机科学和人工智能历史上的两个重要概念:产生式系统和认知架构。CoALA将语言agent的设计归纳为三个关键维度:信息存储(工作记忆和长期记忆)、行动空间(内部和外部行动)以及决策程序(规划和执行的交互循环)。

CoALA的独特之处在于它不仅提供了一个理论框架,还将其与现有的实践紧密结合。通过这个框架,研究者们可以清晰地描述和比较各种现有的语言agent,同时也为开发新型agent指明了方向。这种理论与实践的结合为AI研究开辟了一条崭新的道路,有望在短期内推动语言agent的快速发展,并在长远上为实现更高级的人工智能奠定基础。

CoALA的出现标志着AI研究进入了一个新的阶段。它不仅为语言agent的设计提供了一个统一的认知框架,更重要的是,它为我们思考AI的本质、智能的本质提供了新的视角。随着这个框架的不断完善和应用,我们可以期待看到更多模仿人类认知过程的AI系统诞生,这些系统不仅能够理解和生成语言,还能像人类一样思考、规划和解决复杂问题。CoALA的提出,无疑为AI向着真正的智能迈出了关键的一步。

2、LLaMA-Berry:AI挑战奥数难题,数学推理能力再升级

论文标题:LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning

论文链接:https://arxiv.org/abs/2410.02884

在人工智能的浩瀚星海中,数学推理一直是一颗难以触及的明珠。尽管大型语言模型(LLMs)在一般数学任务中表现出色,但面对奥林匹克级别的数学难题时,它们仍显得力不从心。然而,一项名为LLaMA-Berry的突破性研究正在改变这一局面,为AI攻克高难度数学推理开辟了新的可能。

LLaMA-Berry框架的核心在于其两大创新:自优化蒙特卡洛树搜索(SR-MCTS)和成对偏好奖励模型(PPRM)。SR-MCTS将整个解题过程视为一个独立状态,通过自我优化来探索最佳解决方案。而PPRM则巧妙地借鉴了人类反馈强化学习的思想,通过评估解决方案之间的偏好关系来指导搜索方向。这种方法不仅提高了搜索效率,还避免了传统评分模型的波动性。

令人振奋的是,LLaMA-Berry在多个数学基准测试中的表现都大大超越了现有方法。特别是在AIME24和AMC23等奥林匹克级别的基准测试中,它甚至将LLaMA-3.1-8B的性能提升到了可与GPT-4 Turbo媲美的水平。这一成果不仅证明了LLaMA-Berry在提升AI数学推理能力方面的巨大潜力,也为其在物理、化学等其他领域的应用打开了新的大门。

LLaMA-Berry的成功不仅仅意味着AI在解决数学难题上迈出了一大步,更重要的是,它展示了AI系统如何通过创新的算法设计来突破自身限制,在复杂推理任务中取得突破性进展。随着这项技术的不断发展,我们可以期待看到AI在更多高难度科学问题上的惊人表现,为人类的科学探索提供强大助力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值